
The Best of both Worlds:  
Challenges in Linking Provenance 

and Explainability  
in Distributed Machine Learning  

Stefanie Scherzinger, OTH Regensburg, Germany 
Christin Seifert, University of Twente, Netherlands 

Lena Wiese, Leibniz University Hannover, Hanover, Germany  

@ICDCS, Dallas, TX, 2019-07-09



End-2-End Explanations
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Explainable AI (ML)

positive

not 
creditworthy

mountains,  
sunset

• Ubiquitous AI, Algorithmic Accountability [1] 
• GDPR “right to explanation” [2] 
• IEEE, ACM Code of Ethics: “Be fair and take action not to discriminate.” [3]

[1]N. Diakopoulos, “Accountability in algorithmic decision making,” Commun. ACM, vol. 59, no. 2, pp. 56–62, Jan. 2016. 
[2] B. Goodman and S. Flaxman, “European Union regulations on algorithmic decision-making and a “right to explanation”,” ArXiv e-prints, Jun. 2016. 
[3]https://www.acm.org/code-of-ethics
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Feature Based Explanations

source: https://christophm.github.io/interpretable-ml-book/feature-importance.html

• predict number of rented bikes

https://christophm.github.io/interpretable-ml-book/feature-importance.html
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Counterfactual Explanations

source: https://christophm.github.io/interpretable-ml-book/counterfactual.html#counterfactual

• predict a student’s average grade of the first year at law school 
• features: grade point average (GPA) prior to law school, race and law school 

entrance exam scores (SAT score) 
• “What needs to be changed to get a score of “0” (average)?

https://christophm.github.io/interpretable-ml-book/counterfactual.html#counterfactual
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Model-based explanations

https://christophm.github.io/interpretable-ml-book/lime.html#lime-for-tabular-data
Krizhevsky, Alex. "ImageNet Classification with Deep Convolutional Neural Networks" (PDF). Retrieved 17 November 2013.

https://christophm.github.io/interpretable-ml-book/lime.html#lime-for-tabular-data
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Distributed processingExplainable AI

positive
not 

creditworthy
mountains, 

sunset

• Assumes clean data sets
• distributed data 

• distributed Megasets (Anja)  
• distributed processing  

• on the edge (Marilyn), in the cloud, fog 
• pre-processing

explanations are not truthful
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pizza <= 2.47
entropy = 0.97
samples = 5
value = [3, 2]
class = not fit

sport <= 0.5
entropy = 0.92
samples = 3
value = [1, 2]

class = fit

True

entropy = 0.0
samples = 2
value = [2, 0]
class = not fit

entropy = 0.0
samples = 1
value = [1, 0]
class = not fit

entropy = 0.0
samples = 2
value = [0, 2]

class = fit

sport <= 0.5
entropy = 0.92
samples = 3
value = [1, 2]

class = fit

entropy = 0.0
samples = 1
value = [1, 0]
class = not fit

entropy = 0.0
samples = 2
value = [0, 2]

class = fit

Tree 1 Tree 2 
Partition 1 Partition 2

Zoe

False

True False

FalseTrue

[age = 40, pizza = 7, sport =1]

[fit: 0.0, not fit: 1.0]not fit fit[fit: 1.0, not fit: 0.0]

not fit: 0.5, fit: 0.5Decision Aggregation:

50% fit, 50% not fitZoe:

how to make the decision? how to explain the decision?which to trust more?
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False

True False
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low sample size

normalized and imputed data
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Model-based explanation

IF (pizza <=2.47) 
   AND (sport > 0.5) 
THEN FIT

IF (sport > 0.5) 
THEN FIT

Can I eat pizza?

[more types on explanations in the paper]
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Bias and Fairness

Data VolumeAccess to Provenance Information

Provenance Granularity

for truthful explanations, we would like to 
guarantee that all data processing steps 
are repeatable, and we also have all 
information on model provenance

Provenance information in  
machine learning libraries

different levels of provenance are 
necessary (example: in first table data 
imputation needs to be tracked vs. second 
table had not imputed values)

Intelligent adaption of level of  
granularity for provenance data

provenance for ML algorithms adds to 
data volume

Efficient storage and querying of 
provenance information (e.g., HDFS)

biased data distributions that do not 
follow the general trend; Simpson’s 
paradox (e.g. model in table 1 is less 
accurate for females)

Bias-aware ML algorithms (statistical  
comparison across machines)

similar to reproducibility of experiments (Logan et al., ICDCS2019)
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Provenance Visualization Variability and Lack of Standards

Data Freshness Data Protection and Privacy

more recent data might be more important 
for ML models, in distributed setting stale 
data is more likely

Track provenance for data  
creation and modification 

not clear yet which provenance data needs 
to be tracked; different data base 
standards, integration systems, ML libraries

Communities need to agree on  
data exchange format

provenance information needs to be 
accessible to humans (e.g. ML developers)

Solutions for high-dimensional  
data from VIS and HCI community

provenance tracking might be a data 
privacy breech for (some or all) nodes in a 
distributed setting

Trade-offs between anonymization and  
providing provenance data + ML explainability 
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Without knowledge about data and model provenance we 
are unable to truthfully explain and assess the 
trustworthiness of the resulting machine learning decision. 

Bias and Fairness

Data VolumeAccess to Provenance Information

Provenance Granularity

Provenance Visualization Variability and Lack of Standards

Data Freshness Data Protection and Privacy
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