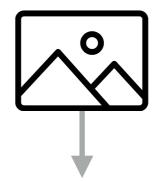
The Best of both Worlds: Challenges in Linking Provenance and Explainability in Distributed Machine Learning

Stefanie Scherzinger, OTH Regensburg, Germany <u>Christin Seifert</u>, University of Twente, Netherlands Lena Wiese, Leibniz University Hannover, Hanover, Germany

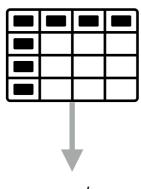
@ICDCS, Dallas, TX, 2019-07-09

Explainable AI (ML)

- Ubiquitous AI, Algorithmic Accountability [1]
- GDPR "right to explanation" [2]
- IEEE, ACM Code of Ethics: "Be fair and take action not to discriminate." [3]



mountains, sunset



not creditworthy

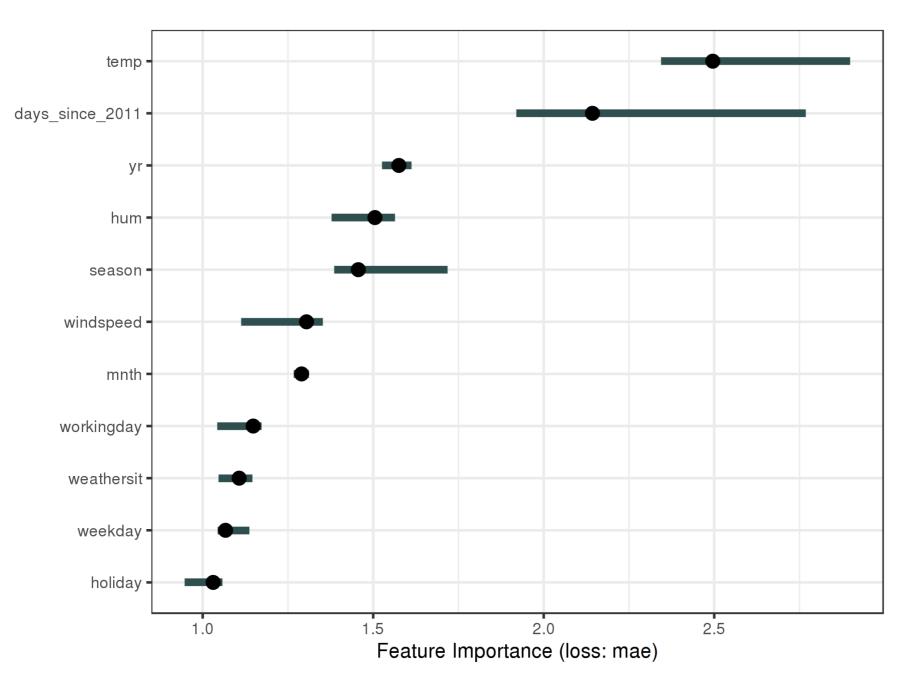
fx

positive

[1]N. Diakopoulos, "Accountability in algorithmic decision making," *Commun. ACM*, vol. 59, no. 2, pp. 56–62, Jan. 2016.
[2] B. Goodman and S. Flaxman, "European Union regulations on algorithmic decision-making and a "right to explanation"," *ArXiv e-prints*, Jun. 2016.
[3] https://www.acm.org/code-of-ethics

Feature Based Explanations

• predict number of rented bikes

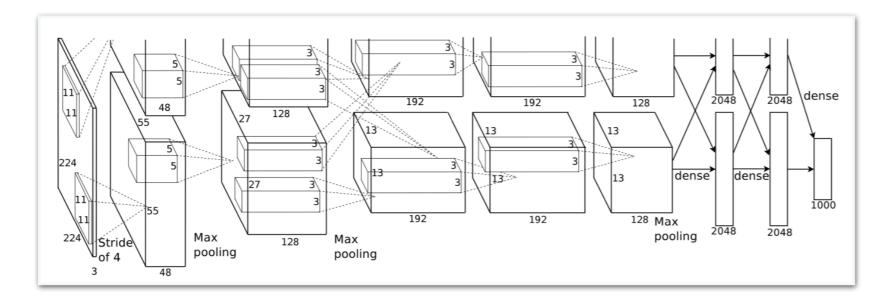


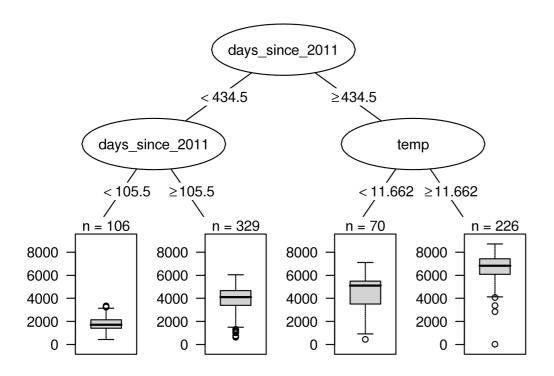
Counterfactual Explanations

- predict a student's average grade of the first year at law school
- features: grade point average (GPA) prior to law school, race and law school entrance exam scores (SAT score)
- "What needs to be changed to get a score of "0" (average)?

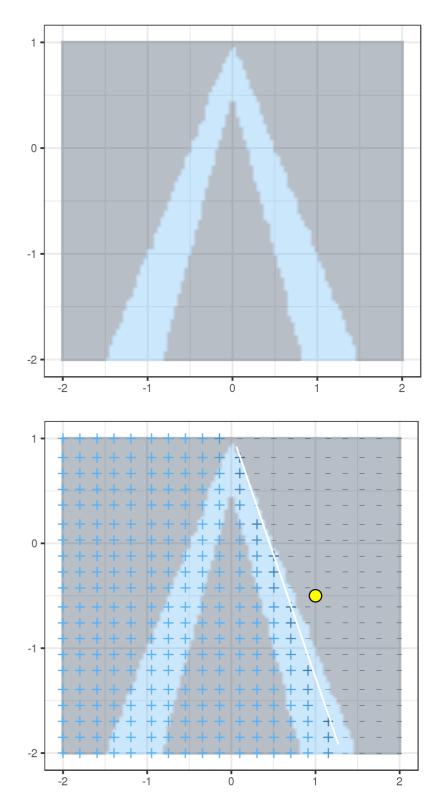
Score	GPA	LSAT	Race	GPA x'	LSAT x'	Race x'
0.17	3.1	39.0	0	3.1	34.0	0
0.54	3.7	48.0	0	3.7	32.4	0
-0.77	3.3	28.0	1	3.3	33.5	0
-0.83	2.4	28.5	1	2.4	35.8	0
-0.57	2.7	18.3	0	2.7	34.9	0

Model-based explanations



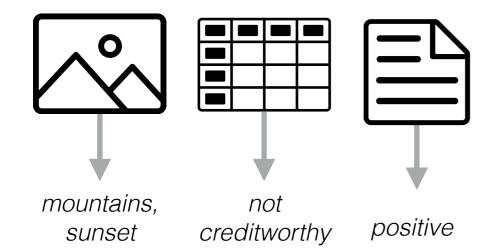


Krizhevsky, Alex. "ImageNet Classification with Deep Convolutional Neural Networks" (PDF). Retrieved 17 November 2013.



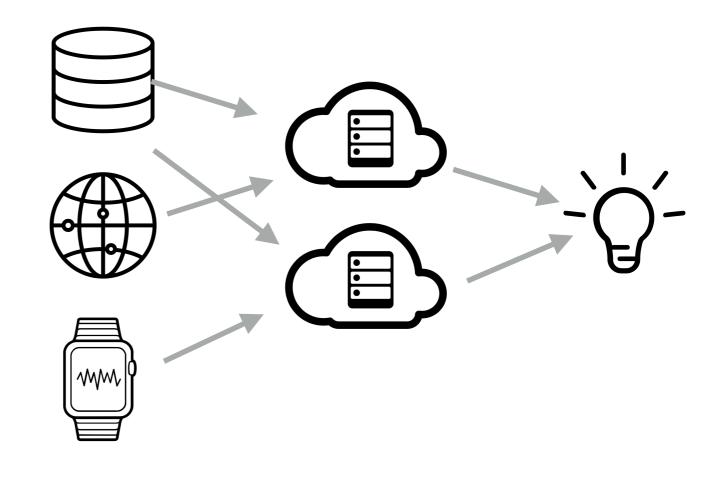
Explainable Al

• Assumes clean data sets



Distributed processing

- distributed data
 - distributed Megasets (Anja)
- distributed processing
 - on the edge (Marilyn), in the cloud, fog
- pre-processing

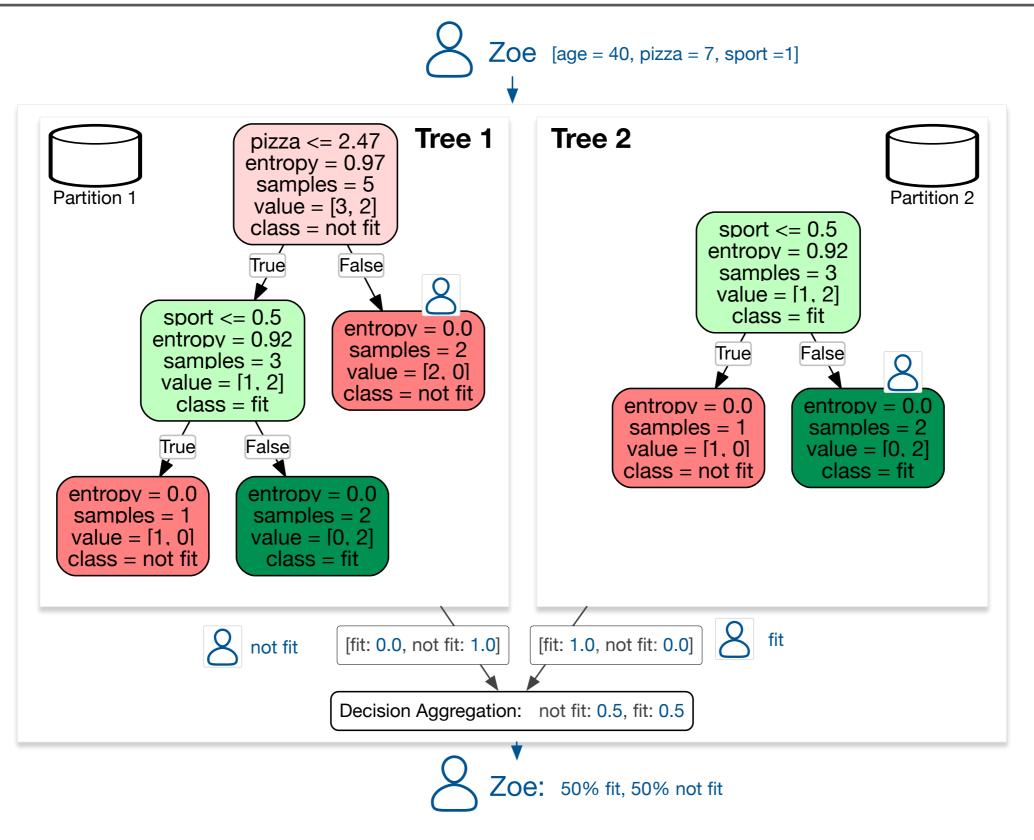


explanations are not truthful

Name (N)	Age (A)	Pizzas (P)	Sport (S)	Fit (F)
	TF	RAINING DATA		
Amy	35	0	1	1
Bob	20	2	1	1
Charlie	32	2	0	0
Dave	null	5	null	"N"
Eve	24	null	1	"0"
Francis	35	0	1	1
Greg	20	0	1	1
Haley	32	2	0	0
		Test Data		
Zoe	40	7	1	?

S А Р F Ν 35. 0. 1. А 1 20. 2. В 1. 1 32. 2. С 0. 0 5. 23.04 0.68 0 D E 24. 2.94 1. 0

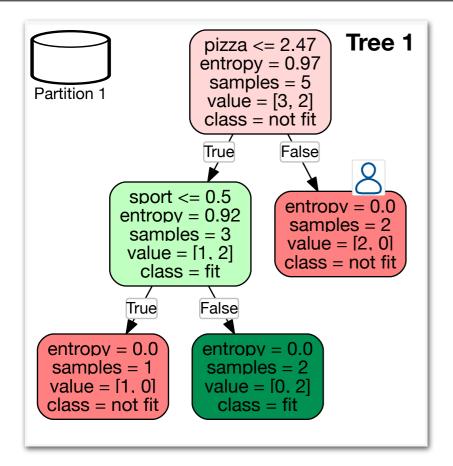
Ν	Α	Р	S	F
F	35.	0.	1.	1
G	20.	4.	1.	1
Η	32.	2.	0.	0



how to make the decision?

which to trust more?

how to explain the decision?

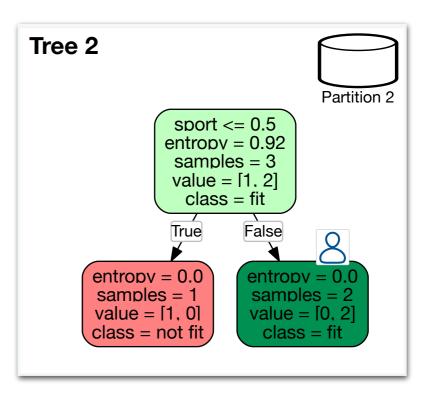


Ν	Α	Р	S	F
А	35.	0.	1.	1
В	20.	2.	1.	1
С	32.	2.	0.	0
D	23.04	5.	0.68	0
E	24.	2.94	1.	0

normalized and imputed data

Ν	А	Р	S	F
F	35.	0.	1.	1
G	20.	4.	1.	1
Η	32.	2.	0.	0

low sample size



Model-based explanation

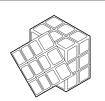


IF (sport > 0.5) THEN FIT

Can I eat pizza?

[more types on explanations in the paper]

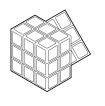
Challenges (and Solutions)



Access to Provenance Information

for truthful explanations, we would like to guarantee that all data processing steps are repeatable, and we also have all information on *model provenance*

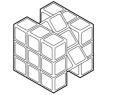
Provenance information in machine learning libraries



Provenance Granularity

different levels of provenance are necessary (example: in first table data imputation needs to be tracked vs. second table had not imputed values)

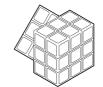
Intelligent adaption of level of granularity for provenance data



Data Volume

provenance for ML algorithms adds to data volume

Efficient storage and querying of provenance information (e.g., HDFS)



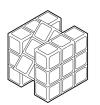
Bias and Fairness

biased data distributions that do not follow the general trend; Simpson's paradox (e.g. model in table 1 is less accurate for females)

Bias-aware ML algorithms (statistical comparison across machines)

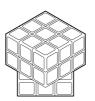
similar to reproducibility of experiments (Logan et al., ICDCS2019)

Challenges (and Solutions)



Provenance Visualization

provenance information needs to be accessible to humans (e.g. ML developers)

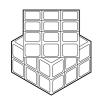


Variability and Lack of Standards

not clear yet which provenance data needs to be tracked; different data base standards, integration systems, ML libraries

Solutions for high-dimensional data from VIS and HCI community

Communities need to agree on data exchange format



Data Freshness

more recent data might be more important for ML models, in distributed setting stale data is more likely

Track provenance for data creation and modification

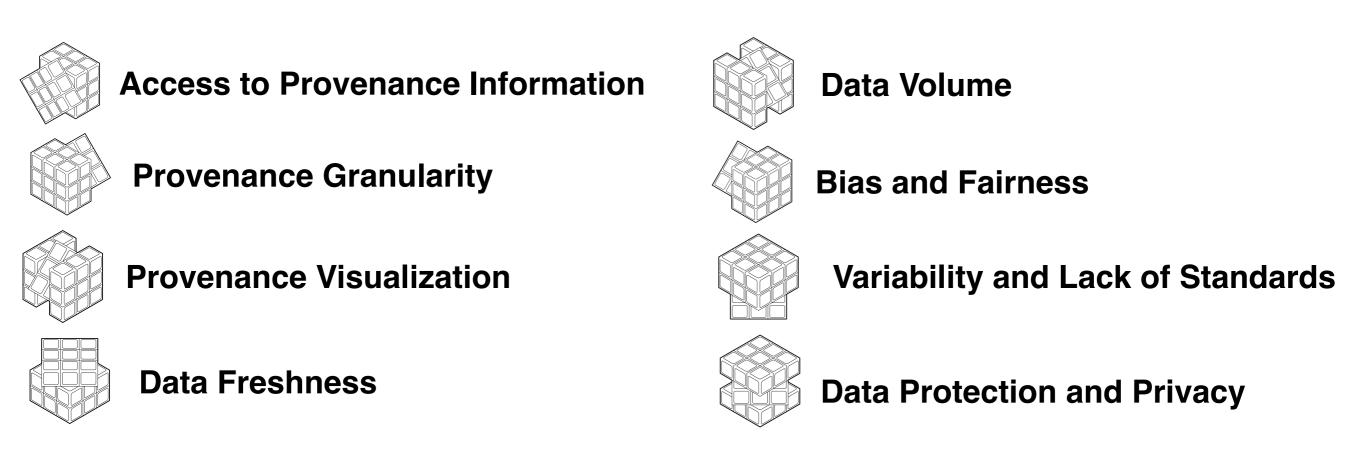


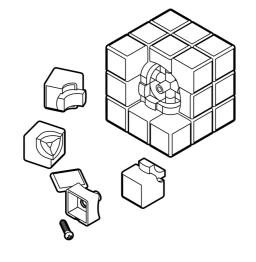
Data Protection and Privacy

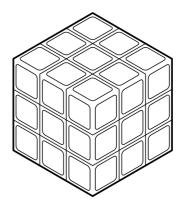
provenance tracking might be a data privacy breech for (some or all) nodes in a distributed setting

Trade-offs between anonymization and providing provenance data + ML explainability

Without knowledge about data and model provenance we are unable to truthfully explain and assess the trustworthiness of the resulting machine learning decision.







Contact:

stefanie.scherzinger@oth-regensburg.de

c.seifert@utwente.nl

wiese@l3s.de