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1 Executive Summary

This deliverable describes the development and research related to user and usage mining in Y3. The

work can be grouped in 4 tasks:

• Develop client-side user mining libraries that can be re-used by clients using Web technologies
(JavaScript, HTML, CSS) (corresponds to Task 5.1 in DoW).

• Develop a feature-rich prototype using the context detection libraries, serving as test case for
end user testing and example for developers of other clients (corresponds to Task 5.1 in DoW).

• Develop a prototype for analyzing usage of EEXCESS resources. Due to the client-server architec-
ture of EEXCESS, this requires proper logging on the server as prerequisite (corresponds to Task

5.2 in DoW).

• Develop a prototype for mining of external resources (corresponds to Task 5.3 in DoW).

c4

Chrome
extension

DoSeR
services

LoggingAnalysis
GUI

Blog 
Analyser

Blog 
Crawler

Popularity 
Estimator

Figure 1: Overview of themain components developed in this work package indicating the status of de-

velopment (green - finished, yellow - stable, but will be extended, red - development started)

In terms of components, the libraries, services and prototypes shown in figure 1 have been de-

veloped or are under development. The source code of all components is available from Github

https://github.com/EEXCESS/, the README.md of each component describes its purpose, usage

and the API if applicable.

C4 (SCientific and Cultural Content in Context) is a library encompassing all the context detection

modules. As previous experiments had shown that the information need in Web context is better

represented by a paragraph of a web site than the whole site, modules include paragraph detection,

focus paragraph identification and noun phrase detection. Personalization is realized as follows: for

each manual search the categories of named entities are stored comprising the user profile. This

profile is then used to filter the keywords generated for the current paragraph leading to a more

narrow search query. Moreover, a wrapper for the logging and disambiguation service is available

there. C4 is currently used by other clients, namely the Wordpress plugin and the Moodle Plugin.

Due to the restriction of the Google Add-on store, the Google Docs plugin implements its own context

detection functions. C4 is available from Github http://purl.org/eexcess/components/c4.

DoSeR (Disambiguation of Semantic Resources) is a component for named entity disambiguation

and category assignment. It is the basis for the client-side query generation. DoSeR requires a entity

knowledge base, thus it is a server-side component with the service calls wrapped in C4. DoSeR is

finished on the algorithmic level, additional languages will be added in the form of new knowledge

bases (the language detection itself is located on the client). The source code can be found at http:

//purl.org/eexcess/components/research/doser.

c© EEXCESS consortium: all rights reserved 5
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Chrome Extension The Chrome extension is one of the main EEXCESS end-user prototypes and the

most feature-rich w.r.t. context detection and personalization. The extension detects the paragraph of

interest on a web page, extracts the keywords, enables user adaptations to the query constructed from

these keywords, sends the query and presents the results. Personalization is implemented as keyword

filtering based on previous queries. Mechanisms for learning on which page the extension should be

switched on/off are also included. The Chrome Extension has reached a stable state, updates will

be part of the C4 library. The extension is available in the Chrome Web store http://purl.org/

eexcess/clients/chrome-extension, and the source code can be found on Github http://purl.

org/eexcess/components/chrome-extension.

Logging has been implemented as a crucial prerequisite for the analysis of internal resource usage,

and the development of the Analysis GUI. The logging concept is privacy-preserving, and a client-side

logging library has been developed for the usage of all clients and is part of the C4 library. Concept and

API definition have been done in cooperation with work package 6, work package 5 has then focused

on the implementation of the client side logging.

The Blog Crawler has been further developed and finalized to improve the data collection, also

for subsequent experiments. The Blog Analyser for linking Blogs to EEXCESS resources has been

finalized. The development of the Popularity Estimator, a component for finding features that pre-

dict the popularity of scientific papers and blogs, has started. The source code of the crawler and

the analyser is available from http://purl.org/eexcess/components/research/blogcrawler and

http://purl.org/eexcess/components/research/bloganalyzer respectively.

1.1 Potential Risks

We investigated potential risks of the current prototypes and deployments and developed fall-back

strategies, accordingly.

Server-side components not reachable: Depending on the number of clients simultaneously re-

questing services, it might happen that the server-side keyword detection (DoSeR service) is not avail-

able, and thus no automatic query can be constructed. In this case, the client will rely on client-side

keyword detection methods, such as TextRank or TF-IDF based word filtering, where the TF-IDF statis-

tics have been calculated from the browsing history. These methods are implemented already in C4,

data collection for deciding which one would serve the purpose best is currently ongoing.

Restricted privacy-settings: External services such as DoSeR might not be allowed with restricted

privacy settings. The fall-back solution in this case is the same as above.

1.2 Next Steps

The next steps in this project, apart from fixing bugs in finished components, are the following:

1. Finish the Analysis GUI to make EEXCESS usage statistics available to internal and prospective

data providers.

2. Finish the Popularity Estimator to find external resources that relate to EEXCESS content.

3. Finish development of the context detection library. To this extend a user study is planned in

Q4/2015 in which training data for model improvements will be collected.

c© EEXCESS consortium: all rights reserved 6
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2 Introduction

2.1 Purpose of this Document

This deliverable describes the second prototype for the functionality described in Task 5.1, 5.2 and 5.3.

The source code for the prototype software components is available from open source repositories,

URLs for the repositories are given in the executive summary (section 1) and in the respective section

for each component.

2.2 Scope of this Document

This deliverable describes the software components for user and usage mining developed within work

package 5. The focus of this deliverable are the the context-detection functionalities used in various

clients, and the usage mining components. A prerequisite for analysis of internal usage mining is a

propper logging. Logging comprises of a client and a server part. The logging client libraries are de-

scribed in this deliverable, the server component is part of deliverable D6.3 [Mok+14]. The contect

detection concept has been implemented in various prototypes, with a focus on the Chrome exten-

sion. The Chrome extension GUI is not described here, a guided tour can be found in deliverable D2.4

[Sei+15a].

2.3 Status of this Document

This is a the final version of D5.3.

2.4 Related Documents

D2.4 Second Software Components for Presentation and Augmentation Interfaces [Sei+15a]

In detail the following section is of interest for the reader:

• Refer to section 3.1 for a guided tour of the prototype for context detection, the Chrome exten-
sion.

D6.3 Second Security Proxy Prototype and Reputation Protocols [Mok+14]

In detail the following section is of interest for the reader:

• Refer to section 5.2.2 for the logging server component.

D7.4 Second Prototype Integration and Deployment [Dop15]

In detail the following section is of interest for the reader:

• Refer to section 7.1 for the Test Bed evaluation plan of the Chrome Extension Test Bed, including
goals to collect data for evaluation and improvment of context detection algorithms.

c© EEXCESS consortium: all rights reserved 7
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3 Overview

The work in this work package can be structured into work on (i) context detection and query construc-

tion for personalization, (ii) usage mining of external resources, and (iii) privacy-preserving usage-

mining of project-internal resources. This is in alignemt with the three tasks in the DoW.

This deliverable presents the conceptual idea for each of the tasks, as well as developed libraries and

prototypes (if applicable). The following figure gives an overview of the structure of this deliverable:

Context Detection 
& 

Query Construction

Mining 
External 

Resources

Privacy-preserving
Usage Analysis of

Internal Resources

• concept in section 4 • concept in section 7 • concept in section 9
• libraries in section 5 • libraries in section 10
• prototype in section 6 • prototype in section 8 • prototype in section 11

3.1 Publications

In WP5 the following publications have been accepted since the write-up of deliverable D5.2 [Sei+14]

or are under submission. Some papers refer to prototypes that have been already presented in the

last deliverable (but the paper had not been accepted at this time) and will not be referenced further

in this deliverable. Papers relevant to the content of this deliverable are referenced again in the

respective sections.

Under submission

• We submitted a paper that investigated the memory efficiency and robustness of word embed-
dings. In particular, we explored three methods for post-processing Skip-Gram word represen-

tations in order to reduce their required memory while still representing words accurately. The

work is summarized in section 4.4.

• We submitted a paper presenting an approach to create interest profiles from external sources
to eleviate the cold-start problem of personalization. In particular, we utilize the followees (the

accounts a user follows) of a Twitter user, which does not require the user to tweet actively (i.e.

she does not need to write tweets). We found that 7 out of 10 predicted interests are indeed

relevant interests of the test users. An overview is presented in section 4.3.2.

User Mining and Personalization

• In this paper, we present a concept for creating search queries from the current user context. A
revised version of this concept is presented in section 4 of this deliverable. The work recieved

the First Place at the ACM Student Challenge, 2015.

Jörg Schlötterer. “From Context to Query”. In: Proceedings of the 30th Annual ACM

Symposium on Applied Computing. SAC ’15. Salamanca, Spain: ACM, 2015, pp. 1108–

1109. ISBN: 978-1-4503-3196-8. DOI: 10.1145/2695664.2696061. URL: http://doi.

acm.org/10.1145/2695664.2696061

• In this paper, we present a procedure for collecting a personalization data set for long-tail con-
tent (using Europeana as search backend). The data set is used for first experiments on learning

user queries from user selections. The data set was also used in work package 3 for query

diversification experiments.

Christin Seifert, Jörg Schlötterer, and Michael Granitzer. “Towards a Feature-Rich Data

Set for Personalized Access to Long-Tail Content”. In: Proceedings of the 30th Annual

ACM Symposium on Applied Computing. New York, NY, USA: ACM, Apr. 2015

c© EEXCESS consortium: all rights reserved 8
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• In this paper, we investigate the three crucial properties of disambiguation systems (i) entity
context (KB), i.e. the way entities are described, (ii) user data, i.e. quantity and quality of exter-

nally disambiguated entities, and (iii) quantity and heterogeneity of entities to disambiguatate

are investigated. More details are presented in section 4.2.1.

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “From General to Special-

ized Domain: Analyzing Three Crucial Problems of Biomedical Entity Disambiguation”.

In: Proceedings of 26th International Conference on Database and Expert Systems

Applications (DEXA). Springer, 2015

• In this paper, we investigate how the quantity of annotated entities within documents and the
document count used for entity classification influence disambiguation results. More details are

presented in section 4.2.1

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “Search-based Entity Dis-

ambiguation with Document-Centric Knowledge Bases”. In: Proceedings of the 14th

International Conference on Knowledge Management and Knowledge Technologies (I-

Know). Oct. 2015

• In this paper, we reviewed state-of-the art in entity disambiguation, with the focus on the biomed-
ical domain. More details are presented in section 4.2.1.

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “Linking Biomedical Data

to the Cloud”. English. In: Smart Health. Ed. by Andreas Holzinger, Carsten Röcker, and

Martina Ziefle. Vol. 8700. Lecture Notes in Computer Science. Springer International

Publishing, 2015, pp. 209–235. ISBN: 978-3-319-16225-6. DOI: 10.1007/978-3-319-

16226-3_9. URL: http://dx.doi.org/10.1007/978-3-319-16226-3_9

• In this paper the usage of mobile sensors for search-based recommendations was investigated.
The resulting prototype was presented as a demo.

Jörg Schlötterer et al. “From Context-Aware to Context-Based: Mobile Just-In-Time Re-

trieval of Cultural Heritage Objects”. In: Proc. European Conference on IR Research

(ECIR 2015). Ed. by Allan Hanbury et al. LNCS 9022. Vienna, Austria: Springer, Mar.

2015, pp. 805–808. DOI: 10.1007/978-3-319-16354-3_90

Usage Mining

• This paper describes the usage mining experiments and results from the previous year on Blogs
and Twitter data that lead to the new research direction with respect to usage mining.

Christin Seifert et al. “Digital Library Content in the Social Web: Resource Usage and

Content Injection”. In: IEEE STCN Newsletter. Vol. 3. 1. 2015. URL: https://sites.

google.com/a/ieee.net/stc-social-networking/e-letter/stcsn-e-letter-vol-

3-no-1/

• This paper describes the experiments for identifying economists on Twitter. It concludes that
this is feasible but requires a well-curated author database that is not available for the cultural

domain. The results contributed to the change of research direction in the usage mining task.

Alexander Böhm et al. “Identifying Tweets from the Economic Domain”. In: NLDB ISKO

Workshop. 2015
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4 Context Detection & Query Construction Concept

In this section, we describe the general concept of context detection and the extraction of the relevant

parts from the context in order to generate a search query profile. The concept was first described in

[Sch15] and also in [Pas15]. Here we present a revised version with the focus on the implementation.

In the web environment, observable context dimensions encompass first of all the web pages visited

and in addition information like the user’s location. We focus on the textual content of web pages as

the primary source of contextual information. Further contextual dimensions (like for example mouse

position) are used as additional cues to identify, select and filter relevant parts of the textual context.

We conduct a subdivision of the textual context into five levels of granularity (from fine-grained

to coarse): terms, phrases, paragraphs, pages and sessions. We conduct this subdivision to cover

scenarios demanding either narrow or broad focus. For example, when searching for information

about the French Revolution, a timeline with the general course of events may be desirable in the

beginning, whereas when reading a paragraph about the Marseillaise on a particular page, a sound

clip of it is more likely to be relevant. Due to different characteristics, each of these levels requires

its own treatment. Furthermore, a more coarse-grained level might influence the treatment of a

more fine-grained level. Not all clients implement each level and some clients require adaptions of

individual steps, but this section provides a comprehensive overview of the basic principles.

The goal of our context detection and query construction concept is to transform the user’s context

into a query profile for the federated recommender, in order to retrieve additional resources relevant

to the task at hand. Therefore, in accordance with the user-based information seeking model of

Marchionini and White [MW07], our steps towards a query profile consist of:

1. identifying the relevant context

2. recognizing an information need

3. expressing this information need (in terms of a query profile to the federated recommender)

Table 1 provides an overview of these three steps for the different levels of context granularity, which

will be detailed in the next section. We omitted the term level, since it is covered by our approach for

the phrase level by regarding terms as single term phrases.

Table 1: Context Detection & Query Construction Overview

context

granularity

level detection

method

information

need detection

information need

formulation

information need

representation

phrases text selection
TRUE

(for selection)

Conditional Random

Field model
terms

paragraph
web browser

focus area

topic overlap

with user profile

entity disambiguation

and selection

keyword detection

terms + entities

(who, what, where)

pages NONE
url & title

classification

entity disambiguation

and selection

keyword detection

terms + entities

(who, what, where)

sessions

(sequence

of pages)

topic similarity

navigation

patterns

session clusters
entity disambiguation

and selection

terms + entities

(who, what, where)

4.1 Detailed Context Detection and Query Construction per Granularity Level

This section provides a detailed description of the relevant context identification, information need

recognition and information need expression for each context granularity level. The granularity levels
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covered by the current deployment comprise the phrase and paragraph level. For the sake of com-

pleteness, we describe all levels and steps and explain what has been implemented already and how

we plan to integrate the missing steps.

4.1.1 Phrase Level

Relevant context identification The most accurate way to identify the phrase currently read by the

user is eye tracking - browser events, such as mouse movements or scroll position yield only

limited accuracy [HPW11]. Thus, we rely on explicit user interaction in this case, i.e. a text

selection, which is a strong indicator for reading focus [HPW11].

Information need recognition Given a text selection, we assume an information need implicitly.

Information need expression To gather ground truth data, we conducted an experiment, in which

we had users select arbitrary pieces of text in web pages and issue queries to find resources

relevant to that selection. It turned out, that most terms in the users’ queries were already

contained in the corresponding text selection. Given these results, we trained a conditional

random field model (CRF), to determine which terms of the selection should be used as query,

achieving almost 90% accuracy with 10-fold cross validation [SSG15].

We did not integrate the CRF into the current deployment, but instead apply the same approach to text

selections as for the paragraph level. This is due to the fact, that an automatically extracted paragraph

might not perfectly match what the user is currently reading. Hence, with a text selection, the user

has the control to explicitly select a piece of text and set it as the current context. However, we plan to

integrate the CRF and utilize it when the length of the selected text piece is below a certain threshold.

4.1.2 Paragraph Level

Relevant context identification In order to find the relevant paragraph in a web page (i.e. the para-

graph, the user is currently looking at), it is first necessary to distinguish between paragraphs

which convey actual information and irrelevant ones, such as navigational menus, advertise-

ments, etc. For this very first step, we favor a simple approach, in order to keep the computa-

tional effort low and the response times high. A heuristic, based on a fixed length threshold of

DOM text nodes already provided sufficient recognition performance and does not depend on

a particular page structure. Hence, this heuristic is applicable to arbitrary web pages without

influencing the user experience in a negative way.

Once the paragraphs are extracted, the next step is to determine the paragraph which is cur-

rently in the user’s focus. We developed an approach, that takes into account the size of the

paragraph, its position on the screen, the scroll position and the mouse position, as those have

been shown to be able to serve as indicators for reading focus [HPW11]. However, we discov-

ered that the selection process of this approach is not easily interpretable for users and prone

to unintentional focus switches. Therefore, in the current deployment, we regard the topmost

left paragraph as focused unless the user explicitly changes the focused paragraph by clicking on

it, which gives the user more control and provides consistency. Nevertheless, we aim to further

investigate a fully automatic approach.

Information need recognition In order to determine whether an information need exists for the

paragraph, we need to distinguish between paragraphs that are relevant to the user (informa-

tion need) and those that are not (no information need). Since there is no dataset available, that

allows optimizing towards exactly this task, we use similar data obtained from Wikipedia: We

crawled edits of registered authors and based on the edit history of a user, we aim to predict

which paragraph the user will modify when she edits a previously unseen page. Preliminary re-

sults showed rather poor performance of standard classifiers on this dataset (F1 scores between

0.05 and 0.33, depending on the classifier), due to the highly unbalanced class distribution (only
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15% of the paragraphs have been edited). This shows that determining the information need is

a hard task, which cannot be solved with readily available classifiers and we are investigating the

problem in detail, looking for appropriate solutions.

Since we are not able to determine whether an information need exists with a satisfying perfor-

mance until now, we opted for a simpler solution for the current deployment: When the user

looks at a paragraph for a certain amount of time or explicitly selects the paragraph, we assume

an information need. In addition, the notification about the availability of additional results for

the paragraph causes only a subtle change in the peripheral area of the display. Such changes

are not recognized by the user when concentrating on a task and are automatically recognized

when not concentrating on a task [YMK13]. With this approach, the results are presented in an

unobtrusive manner.

Information need expression With about 71% of search queries containing named entities [Guo+09]

and named entities providing semantic meaning, named entities naturally render themselves as

good candidates for query profile construction. The extraction of named entities from a para-

graph is described in detail in section 4.2. In the current deployment, the query consists of all of

the extracted named entities.

However, the amount of entities extracted can be quite large, especially for long paragraphs.

Therefore, it needs filtering, in order to provide precise results. We plan to filter the entities

based on their frequency and the overlap of categories associated to those entities with interests

in the user profile (also represented as categories). The interests in the user profile will be

determined by the categories associated with named entities in queries for which the user had

a look at the result set. See section 4.3 for details.

Furthermore, the named entity extraction may fail to find all relevant keywords in the paragraph

or even be unable to extract any entity. In particular, the named entity extraction is optimized

towards English text. While we plan to integrate a German version as well, we will not be able to

cover all languages. Also, the computational effort makes it necessary to perform the extraction

server-side, raising privacy issues. Therefore, we plan to integrate other techniques that can be

implemented client-side as well. See section 4.3 for details.

4.1.3 Page Level

Relevant context identification By design, only a single page can be the active page in a browser

window. We consider the active page relevant, even though this may not be true in the (rare)

situation of a split screen with several browser windows or tabs.

Information need recognition In the current state, we assume an information need for all pages for

the same reasons as for the paragraph level (result notifications are presented in the peripheral

area of the display and can be easily ignored). In the near future, we will provide the user with

the ability to temporarily deactivate the EEXCESS application for the current page and session

and to completely deactivate EEXCESS for a particular page (and of course also the possibility

to re-activate). We will collect statistics about the pages where EEXCESS has been (de-)activated

and aim to train a classifier based on page URL and title, predicting whether EEXCESS should be

active or not. For example, users will probably never have a need for additional resources when

visiting their banking website and hence will prefer EEXCESS being inactive.

Information need expression The information need could in principle be expressed through the

same mechanisms as used for the paragraph level. However, we will not create queries on page

level, but only on levels below (paragraph, phrase). The levels below provide a more narrow

focus, leading to more precise results and as a page always consists of at least one paragraph,

we see this as the better option.
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4.1.4 Session Level

As just mentioned, we only construct queries below the page level, i.e. for paragraphs and phrases.

We describe the concept for the paragraph level though, since some parts still provide useful input

for individual steps on the lower level. Those parts and their relation to steps on other levels will be

outlined after the concept description at the end of this section.

Relevant context identification The relevant context of a session is a set of pages, which belong

session. The first indicator for session boundaries is the topical coherence of subsequently vis-

ited pages. In some cases, this is not sufficient. For example the pages of a "reading online

news" session may have diverse topics, but still belong to the same session. Preliminary experi-

ments indicated that a small set of recurring sessions (such as the just mentioned "reading online

news") constitute the main part of a user’s browsing behaviour. This hypothesis is supported by

the finding that few sites account for the majority of visits in a user’s browsing history [Obe+07].

Therefore, we plan to cluster the user’s visited pages by their frequency, in order to identify

features of recurring sessions.

Information need recognition Recurring sessions typically do not exhibit an information need per

se, as those are sessions such as "visiting institutional pages". Nevertheless, they still can exhibit

an information need on page level or below. Consider again the "reading online news" example,

in which an information need in online news itself does not exist, but certainly in the topics of the

particular news articles. Hence, we neglect recurring sessions and focus on rare ones. Indicators

for an information need in the latter case are visits of a search engine in between other pages

or textual input to a search form field on an arbitrary page.

Information need expression Expressing the information need on session level could be achieved

with the same approach as on page level (and hence paragraph level), with an aggregation of all

the entities and keywords extracted from the pages that belong to the session.

Even though we do not construct queries on session level, the first two steps (session identification

and information need recognition) still provide useful input for some steps in the levels below. For

the construction of queries on paragraph level (c.f. 4.1.3), we aim to filter the query term candidates

by interests in the user profile. This interest profile can be seen as a long term profile, while a session

provides a short term profile, containing the associated categories of entities extracted within this

session. Hence, the query term candidates can be filtered by a combination of long and short term

profile. The information need detection on session level might be used as an additional feature for

the information need detection on page level (among page url and title).

4.2 Entity and Category Detection

To detect entities and categories of paragraphs we use our DoSeR-framework1. DoSeR offers a JSON

REST interface which performs the following tasks to a given text snippet:

• Named Entity Annotation

• Category Annotation

• Main topic Detection

Our algorithm processes the tasks in the given order and returns the response in JSON format. In the

following we briefly describe these tasks.

1http://purl.org/eexcess/components/research/doser

c© EEXCESS consortium: all rights reserved 13

http://purl.org/eexcess/components/research/doser


D5.3

Second Prototype: User Profile and Context Detection, Usage Analysis

4.2.1 Named Entity Annotation

Named Entity Annotation relies on two important subtasks: (Named) Entity Recognition and (Named)

Entity Disambiguation. Entity recognition forms the first step of creating entity annotations. It iden-

tifies proper nouns (in the following denoted as surface forms) that can be linked to a semantic

meaning. The task of entity disambiguation establishes links between identified surface forms and

entities within a knowledge base (KB) and faces the problem of semantic ambiguity [ZSG15b].

In our work we focused on entity disambiguation with different KBs: Entity-centric KBs and Document-

centric KBs. In this context we identified three crucial and well-known properties of (specialized) dis-

ambiguation systems [ZSG15a]. These are (i) entity context, i.e. the way entities are described, (ii) user

data, i.e. quantity and quality of externally disambiguated entities, and (iii) quantity and heterogeneity

of entities to disambiguate, i.e. the number and size of different domains in a knowledge base. We

analyzed these properties with our ranking-based (Learning To Rank), publicly available disambigua-

tion system DoSeR (Disambiguation of Semantic Resources). Our evaluation reveals that the choice of

entity context that is used to attain the best disambiguation results strongly depends on the amount

of available user data. Additionally, we show that disambiguation accuracy decreases with large-scale

and heterogeneous KBs. Overall, we suggest to use a federated approach of different entity contexts

to maintain the advantages of both approaches [ZSG15a].

While search-based, document-centric KBs perform excellent in specialized domains (i.e. biomed-

ical domain), the question remains how the quantity of annotated entities within documents and

the document count used for entity classification influence disambiguation results. Another open

question is whether disambiguation results hold true on more general knowledge data sets (e.g.

Wikipedia) [ZSG15c]. Our results indicate that search-based entity disambiguation with document-

centric (KB) performs poorly on general domains (i.e. Wikipedia). Additionally, the results show that

disambiguation accuracy increases when using short documents (e.g. Wikipedia paragraphs) instead

of long article pages.

To provide robustness in terms of reliability and performance we apply the Named Entity Recog-

nition and Named Entity Disambiguation system DBpedia Spotlight2 instead of DoSeR. DBpediaSpot-

light is one of the first semantic approaches (2011) and constitutes an entity-centric approach which is

based upon DBpedia. Based on a vector-space representation of entities and using the cosine similar-

ity, this approach has a public available web service. The service is able to recognize and disambiguate

English and German language entities as determined in the request. Furthermore, we detect dates in

documents and treat them like normal entities.

4.2.2 Category Annotation

Since we exclusively annotate Wikipedia/DBpedia entities, we are able to create statistics of categories

that are associated with the entities extracted in Section 4.2.1. Given an entity, we extract a set of

Categories3. After extracting all categories we create a category distribution given all categories of the

identified entities.

4.2.3 Main Topic Detection

We provide the following two possibilities to extract the main topic of a paragraph given the set of

extracted entities of Section 4.2.1: (i) PageRank with Word2Vec, and (ii) Doc2vec. In the current im-

plementation we use Doc2Vec as standard topic detection method. We note that the outcome might

differ after some iterations since the inference step produces slightly different vectors after each step.

PageRank with Word2Vec In the PageRank with Word2Vec approach, we create a fully-connected,

undirected weighted graph with entities extracted from a paragraph being the nodes. Each edge

2https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki
3http://purl.org/dc/terms/subject
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describes the semantic similarity between two nodes. In our work the semantic similarity is the cosine

similarity between the entities n-dimensional vectors. To create these vectors we use word2vec which

generally takes a text corpus as input and produces word vectors as output. In our special case we use

a corpus comprising entities only. When using the PageRank algorithm on the given graph we simulate

a random walk on the graph. The node with the highest PageRank score represents the entity with the

highest importance within the paragraph. Hence, the highest ranked entity represents our main topic.

Doc2Vec Generally based on Word2Vec, Doc2Vec produces a vector given a sentence or document.

Hence, we use the entire input paragraph and infer a representative vector given a Doc2Vec model

created on the Wikipedia corpus. We compare this vector with the vectors of the Wikipedia pages (en-

tities) by computing the cosine similarity. The Wikipedia page (entity) with the highest similarity to the

input paragraph represents the main topic. To significantly improve the performance we reduce the

target entity set to those entities which have been annotated in the given paragraph (cf. Section 4.2.1).

4.3 Keyword Extraction and Filtering

Named entities extracted by the approach presented in the previous section 4.2 build the basis for

our query term candidates. However, two problems can occur when using named entities:

1. The named entity extraction may fail to extract all relevant entities or even fail to extract relevant

entities

2. The named entity extraction may extract too many entities

The first problem can be attributed to the coverage of the underlying knowledge base: If an entity

is not represented in the knowledge base, it can obviously not be extracted. Moreover, the entity

extraction is optimized towards a specific language. Currently, we provide support for English text. A

misclassification occurs, when feeding German text to the entity extraction is the German preposition

“mit” being recognized as “Massachusetts Institute of Technology (MIT)”. Although we plan to integrate

a German version as well, we are not able to cover other languages yet. Therefore, a language agnostic

fallback solution is desirable. In the further course, we will refer to the extraction of query term

candidates that are no named entities as keyword extraction. Section 4.3.1 presents our intended

approaches to extract keywords.

Regarding the second problem of extracting too many entities, we need to apply filtering, in order

to restrict the query terms to the most relevant (for the user). The filtering step might also be required

for the keyword extraction (depending on the the particular approach). The filtering step is described

in section 4.3.2.

4.3.1 Keyword Extraction

Besides named entities, noun phrases often contain the relevant bits of information in a sentence.

In order to avoid privacy issues, we developed NounPhraseJS4 a JavaScript noun phrase detection,

which can be executed on the client-side. NounPhraseJS achieves a classification rate of 94.8% on

the CoNLL-2000 shared task dataset [TB00] with a training/test split of 80/20. In addition, we applied

NounPhraseJS to date extraction, as alternative for the date extraction provided by DoSer (c.f. sec-

tion 4.2.1). For this task, the WikiWars dataset [MD10] has been used and up to 98.9% of the terms

have been correctly classified as temporal or non-temporal expression. While this approach can be

executed client-side, it requires labeled data for the training. Hence, it also faces the problem of lan-

guage dependence, namely the language of the labeled training data. Also, the list of extracted noun

phrase may grow quite large, which makes filtering necessary.

4https://github.com/EEXCESS/NounPhraseJS
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As another option, we are currently evaluating standard keyword extraction techniques, like the

pure term frequency, tf-idf, BM25 and TextRank [MT04]. To this end, we developed a browser ex-

tension5 for Google Chrome and Mozilla Firefox. This browser extension extracts keywords with the

aforementioned techniques from web pages and presents the top 5 to the user, who than can eval-

uate, whether those keywords are relevant to her on that page or not. The pure frequency of terms

in a document is the most simple measure, but requires stopword filtering. TextRank requires a pre-

processing step, assigning Part-of-Speech (POS) tags. Hence it faces the same problems as the named

entity and noun phrase extraction. Tf-idf and BM25 can be used language independent and by design

filter stopwords automatically (words that occur in every document in the corpus get assigned less

weight). However, the two last mentioned techniques require a document corpus, which we obtain

from the browsing history. We vary the amount of browsing history taken into account and present

keywords extracted with different approaches to the user (without telling the user, which approach

has been used). Preliminary results (530 ratings, obtained from 24 users) vote for TextRank as the

best performing approach with an accuracy around 0.67. The best language independent approach is

tf-idf with an accuracy around 0.61. For this measurements, the accuracy of tf-idf and BM25 has been

averaged across different corpus sizes (the amount of browsing history taken into account) and may

slightly improve, when only accounting for the optimal corpus size. However, up to now, the sample

size is not yet large enough to draw definitive conclusions for the corpus size.

4.3.2 Filtering

As already mentioned, it might be necessary to filter the query candidates in order to narrow the

focus. All of the approaches presented provide the ability to filter the query candidates by their weight

and use only the top-k for the query. For those approaches, that do not assign a weight directly

to the terms, the term frequency can be used as weight as a simple approach. However, the term

frequency does not account for user specific needs, i.e. the query candidates are not personalized.

Regarding tf-idf and BM25, the query terms are personalized by the user specific document corpus

(the browsing history) as it influences their weights. Regarding the named entities, we plan to filter the

query candidates based on a user profile. This user profile will be constructed of categories assigned

to entities used in past queries. Since queries are created and sent automatically, we need to make

sure, that the user is indeed interested in those categories. Therefore, in the construction of the user

profile, we account only for those entities, where the user has viewed the corresponding result set.

With using only categories for the user profile, where the user has viewed the result set of a query

constructed of the corresponding entities, a certain set of queries needs to be executed to fill the user

profile: The approach suffers from a coldstart problem. We envisage two strategies to overcome this

limitation: On the one hand, we will provide the ability for the user to explicitly state her interest in

Wikipedia top-level categories and will spread this interest two lower categories. On the other hand,

we aim to provide the possibility to fill the user interest profile by utilizing a user’s already existing

social media network account. We investigated this using Twitter as external source, and found that 7

out of 10 detected interests were indeed relevant for the test users. This approach also provides the

possibility to just provide a Twitter account name, without the need for credentials. Hence, it could

also be used by users that do not maintain a Twitter account themselves, but know a person with

similar interests, who is on Twitter: They can simple use the Twitter name of this account.

4.4 Embedded Context Detection

Achieving high classification accuracy on Natural Language Processing (NLP) tasks (e.g., POS-tagging,

noun phrase detection) often relies on expressive representations for words. It has been shown that

unsupervisedly learned Word2Vec word representations (word vectors), estimated from large text cor-

pora, improve the accuracy on many NLP tasks through their high-quality features. However, these

word vectors must be computed in advance, i.e. before they can be used within a NLP classification

5http://mics.fim.uni-passau.de/serverREL/RELEVANTICO/intro/en.html
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task. Once computed they provide a certain degree of accuracy boost but also require a lot of memory

(60-150 MB) to be stored.

We were curious if we could exploit the benefits of these word vectors also for memory limited appli-

cations. Since there is little known about the robustness of word vectors against parameter pertur-

bations and about their efficiency in preserving word similarities under memory constraints. In our

work, we investigate three post-processing methods for word vectors to study their robustness and

memory efficiency. We employ a dimensionality-based, a parameter-based and a resolution-based

method to obtain parameter-reduced vectors and we provided a concept that connects the three ap-

proaches. We contrasted these methods with the relative accuracy loss on six intrinsic evaluation

tasks and compared them with regard to the memory efficiency of the reduced vectors. The evalu-

ation showed that the quality of PCA-reduced word vectors is, for some tasks, superior to vectors of

equivalent size and that low Bit-resolution word vectors offer great potential for memory savings by

alleviating the risk of accuracy loss

In particular, we could reduce the total memory requirement of these word representations by 75%

without significant accuracy loss on several evaluation tasks. The results indicate that post-processed

word vectors could also enhance applications on resource limited devices with valuable word features.

4.5 Summary and Future Work

Table 2 summarizes, which parts we already implemented, which parts we partially implemented,

which parts we still plan to implement.

Table 2: Implementation status overview.

Already implemented and deployed

Paragraph extraction Available in the context detection library (c.f. section 5)

Focused paragraph

detection

Available in the context detection library (c.f. section 5)

Named entity extraction Available server-side (c.f. section 4.2)

Implemented in prototypes and planned to be integrated in the deployment

Keyword extraction

(tf, tf-idf, BM25,

TextRank)

implemented for the keyword extraction experiment, need to

integrate the best performing technique into the context detection

library

Noun phrase extraction Implemented as stand-alone prototype (NounPhraseJS), need to

integrate into the keyword extraction process

Embedded context

detection

Implemented as stand-alone prototype, need to integrate into

NounPhraseJS

Twitter interest profile

construction

Implemented as stand-alone prototype, need to deploy and make

accessible via REST-API

Planned to implement

Client-side CRF Optimize query generation on phrase level

Page classification Determining an information need on page level

Query candidates

filtering

Limit the set of query candidates and personalize

Session detection Provide a short-term profile for optimized filtering

The implementations in the deployment will be evaluated with a large scale user study in Q4 2015.

More details can be found in deliverable D7.4 [Dop15] on page 28.
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5 Context Detection Library and Services

Research and development in the context detection task lead to i) a client-side context detection li-

brary, and ii) a service for annotating entities and categories.

Client-Side Modules In this section, we start with an overview on the organization of the different

client-side modules, in order for the reader to get the whole picture and then provide details for the

context detection software. Figure 2 depicts the main components and their interplay. Basically, we

Figure 2: Overview of the client-side modules

have two module types: the components in C4 (Cultural and sCientific Content in Context) and Visu-

alization Widgets. The latter comprise components, which do not need to be aware of the web page

context. They are provided as self-contained web sites, which communicate with their environment

via the Web Messaging API 6. The main advantage of providing those widgets as self-contained pages

and including them as iframes is that they do not inherit any layout definitions of the including page.

Further, they do not add any elements to the including page (except the iframe itself) and hence are

not prone to be affected by element modifications in that page. Also, developers who include these

widgets do not need to care about their internals, but only send (and listen for) a well-defined set of

messages. This set of messages is provided in the Appendix on page 54.

C4 comprises components, which either provide functions without any display elements (or at least

only a small amount) or need a tight connection to the including web page. The parts relevant to

this deliverable all reside in C4. In addition to the existing and planned context detection modules

mentioned in the previous section 4.5, C4 features utility modules for server connections (for query

requests, named entity extraction, logging) and window messaging, a module to create ready-to-use

citations from JSON metadata and a module for adding a search bar to the bottom of a page, that

allows interaction with the query. Details for the available modules and how to use them are provided

in the Appendix on page 41.

Entity-Services To detect entities and categories of paragraphs we use the DoSeR framework (Dis-

ambiguation of Semantic Resources). DoSeR offers rest interfaces to annotate textual or tabular data

with semantic annotations. The EEXCESS project uses the entity and category annotations interface

to perform the following tasks: Named Entity Annotation, Category Annotation and Main topic Detec-

tion. In order to detect the main topics of paragraphs, we apply word2vec/doc2vec which relies on a

Word2Vec Rest server. The REST Server is an important component in the DoSeR framework. Details

for the available services and how to use them are provided in the appendix on pages 39 and 37.

6https://w3c.github.io/webmessaging/
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5.1 Software

• Client-side context detection features such as the extraction of paragraphs and detection of
the active paragraph are available in the C4 package. This package also includes utility (server

connections) and augmentation tools (search bar, citation tool).

⇒ API description and usage details in the appendix on page 41.

• Server-side semantic enrichment of paragraphs with entities and categories is performed in
DoSeR. DoSeR also provides several tools to investigate the underlying data (e.g. tables).

⇒ API description and usage details in the appendix on pages 37 and 39.

5.1.1 Source Code and License

• The source code of the C4 libraries is available on GitHub http://purl.org/eexcess/components/
c4. The libraries are published under MIT license7.

• The source code of DoSeR is available on GitHub http://purl.org/eexcess/components/research/
doser. The DoSeR library is published under GNU GENERAL PUBLIC license 28.

5.1.2 Installation and Usage

• C4 is available as bower9 package. Hence it can conveniently be installed via “bower install c4”,
which will load all the necessary files and dependencies. After installation, the desired modules

can be included by providing “c4/<module_name>” to the require statement of RequireJS10.

⇒ API description and usage details in the appendix on page 41.

• DoSeR is a stand-alone Java library which starts an Apache Tomcat webserver. In order to work
correctly it is necessary to download the doc2vec model as well as DBpediaSpotlight.

⇒ The download links and in-detail installation guides are given in the respective readme files
in the appendix on pages 39 and 37.

6 Context Detection Prototype: Browser Extension

As an example for the usage of the context detection library, we describe the feature-richest prototype,

which is the Chrome browser extension. In other clients, the modules are used analogous.

A screenshot of the extension on the Wikipedia page about Ada Lovelace is shown in figure 3. The

paragraphs which are surrounded by a dotted gray border have been extracted from the page by the

extension. The green border indicates the focused paragraph. The query term candidates which have

been extracted from this paragraph via named entity detection are shown at the bottom of the page.

They have been used to send a query to the EEXCESS federated recommender (via the privacy proxy).

The number of returned results is indicated in the lower right corner. A guided tour of the Chrome

extension is provided in Deliverable D2.4 [Sei+15a, section 3.1].

Figure 4 provides an overview of the extension architecture. It is composed of three main parts

(web page environment, local extension and global extension environment), which will be detailed in

the following.

7http://opensource.org/licenses/MIT
8http://opensource.org/licenses/GPL-2.0
9http://bower.io/
10http://requirejs.org/
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Figure 3: Screenshot of the Chrome extension with extracted paragraphs (outlined in light gray), fo-

cused paragraph (outlined in green), extracted keywords (bottom) and result indicator (bot-

tom right above the EEXCESS icon).

Figure 4: Browser extension architecture.
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Local extension environment The visualization widgets reside in the local extension environment.

This is similar to a regular web page environment, but instead of being accessible under some url

like http://<domain_name>, the widgets are accessible at chrome-extension://<extension_ID>.

This means, they behave like a regular web page. For example, when the same widget would

be added to a web page in two different iframes, each frame would have a separate execution

environment. Hence, the execution environment for the widgets is temporary. The widgets

communicate with the content script via the web messaging API, e.g. the content script might

send a message about new results and the widgets would display those results.

Global extension environment The background script is a single, permanent script in global execu-

tion environment. Hence it can store and share information across tabs, like past queries for

example. The background script is responsible for the connection to the privacy proxy. There-

fore, it makes use of APIconnector module of the C4 package. Before it sends a query request to

the privacy proxy, it enriches the query profile provided by the content script by additional long

term user profile information.

Web page environment The content script in the web page environment has two tasks: context de-

tection within the page and augmentation of the page. For the latter, it adds the searchBar

module of C4 to the page. This module displays a bar at the bottom of the page, which in-

forms about new results and allows interaction with the query and corresponding results (via

visualization widgets). By default, the searchBar directly queries the privacy proxy via the API-

connector module, while the content script provides a custom query function to the searchBar,

which routes the query through the background script. This is necessary in order to be able to

keep track of past queries and enrich the query with additional user profile features.

Regarding the context detection, the content script first extracts the paragraphs of the web page

via the paragraphDetection module of C4 and tracks the focused paragaph via functionality pro-

vided by the same module. Whenever a focused paragraph is detected, an according event will

be thrown with the paragraph attached and the content script retrieves the query terms for this

paragraph via the paragraphToQuery method, also provided in the paragraphDetection module.

This methods in turn retrieves the query terms via a REST call to the DoSer framework. Once the

query terms are available, the content scripts instructs the searchBar to display them and the

searchBar in turn will trigger the provided query function.

6.1 Source Code and License

The source code of the EEXCESS Chrome browser extension is available from github http://purl.

org/eexcess/components/chrome-extension. The extension is published under MIT license11.

6.2 Installation and Usage

The ready-to-use version of the Chrome extension can be installed from the Chrome webstore by

visiting http://purl.org/eexcess/clients/chrome-extension with a supported browser (Chrome

or Chromium).

To setup the Chrome extension for development, you first need to checkout the source code. Af-

terwards, you need to run “npm install” to load the required node modules (requires node.js12). The

final step to load all dependencies is to run “bower install”. Once you have completed these three

steps, navigate to “chrome://extensions” in your Chrome browser, activate the developer mode and

then you will be able to add the extension via “load an unpacked extension”.

11http://opensource.org/licenses/MIT
12https://nodejs.org/en/
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7 Resource Mining Concept

This section describes the current state and the subsequent work of the resource mining component.

As already depicted in D5.2 [Sei+14], the purpose of this component is to identify publicly available

resources (like blogs or research papers) and utilize them in a way that increases the value of EEXCESS

items. The first approach to was to find blog posts that dealt with economic topics, which mentioned

or linked to EconBiz resources. The benefit of such a mapping is, that it enlarges the amount of avail-

able resources that can be subject to a recommendation. This means, that not just items that can be

found in partner systems can be recommended, but also items beyond that scope.

Unfortunately, the results of the first experiments where sobering [Sei+15b], which lead to a mod-

ification of the goals of this component. What we are currently working on is a framework that is

able to predict the relevance of a text merely based on the text itself. This means, given some text of

adequate length, the algorithm can estimate the likelihood that this text will gain significant attention

within the typical target group. We start with a set of research papers and then switch to the set of

blog posts that the blog crawler has already fetched (see section 8).

In order to achieve this goal, state-of-the-art machine learning methods will be used. Based on self-

taught learning [Rai+07], a deep neural network will learn a model of the English language which in

turn will act as the basis for a model that is able to predict the relevance of a text document. A similar

approach is described in [ZZL15].

Estimating the relevance of text is potentially useful for recommendation systems. Such system could

be used to penalize text items with a low relevance score and boost those with a high relevance score.

Beyond the scope of this project, it could for example also play a role in the publishing process of

research papers.

7.1 Upcoming work

Estimating properties from text documents by means of machine learning is a well-known approach

that was able to yield reasonable results. For example Lipka and Stein have been able to identify

featured Wikipedia article from text[LS10], Ashok et al. gained promising results in discriminating

good from very successful novels [AFC13] and Louis and Nenkova did research on the question how

specific the content of a sentence is (i.e. they where able to distinguish specific from more general

sentences) [LN12]. The usual procedure for tasks like this was to identify features that have strong

correlation with the classes (or categories) that one wants to classify documents into. After this was

done, a program was written tho extract these features from training documents in order to train a

classifier (say a Support Vector Machine[BGV92]). Subsequently, this trained classifier was used to

classify new documents with respect to the features at hand. In this workflow a lot of effort was spent

for the process of feature engineering[MM93; Gri07; Luy11] which needs to be repeated whenever

other features are to be examined.

In contrast, in deep learning the feature engineering is done bymachines instead of humans [Rai+07].

Hinton [Hin07] introduced an efficient method to pre-train neural networks which thereafter became

part of several state-of-the-art machine learning systems (e.g. in speech recognition [Den+13] [Hin+12]

and object recognition in images [Le13]).

Based on this approach this experiment will leverage deep learning techniques aiming at under-

standing text structures and thereby gaining the ability to estimate the relevance that a text docu-

ments might have in the future. During pre-training the deep neural network (DNN) will learn to some

degree the fundamental structures of the English language (the concept of words, syntax, punctuation

etc.), similarly to the approach of Sutskever et al. [SMH11]. In a subsequent step the DNN will learn to

discriminate relevant documents from irrelevant documents (on the basis of the knowledge learned

in the previous step).
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7.2 Research questions

The main research question we want to address is:

Can the relevance of a text document be estimated properly by a DNN, merely through the

text itself?

Other research questions that we want to study include:

• Which features does a DNN learn from text corpus? Can they be visualized and understood by
humans?

• Which input format is appropriate to learn the required features?

• How does the feature learning dataset affect the classification results and the ability to general-
ize? Can a model trained on a dataset containing only papers from a specific domain be applied

to a papers from several domains (cross-domain learning).

7.3 Datasets

The learning process comprises two phases:

1. Unsupervised pre-training. During this phase the network is initialized by learning fundamen-

tal principles of the pre-training data (i.e. the language model).

2. Supervised training. During this phase the network learns to map the previously learned con-

cepts to labels. Backpropagation [Wer74] is then used to refine the weights in order to achieve

reasonable classification results.

Both training phases require separate dataset with different characteristics:

• Pre-training corpus (feature learning):
This corpus is currently undetermined. Candidates include open access repositories that con-

tribute to RePEc and arXiv.org. It is required to have a dataset that is vastly greater than the

training set.

• Training, validation and test corpus:
ZBW’s open access repository EconStor13 contains 100k economic research papers. After aug-

menting the dataset with relevance labels, the dataset will be split randomly into three chunks:

– training data (70%),

– validation data (20%),

– test data (10%).

The training set will be used for training, the validation set will be used to prevent overfitting and

the test set will be used to assess the overall performance of the DNN.

7.4 Metadata augmentation

RePEc14 is among the largest providers for academic material (over 1,200,000 papers) and the largest

for the economic domain, which makes it representative for this specific domain. What makes RePEc

particularly interesting for the proposed research is its citation graph, that counts the citations be-

tween the RePEc papers. It should be noted that RePEc does not host articles itself. It only provides

the metadata, whereas the hosting is done by several open access repositories (like EconStor). Figure

6 and 5 show the same paper hosted at EconStor and RePEc. The import thing to note here is that

13http://econstor.eu
14http://repec.org

c© EEXCESS consortium: all rights reserved 23

http://econstor.eu
http://repec.org


D5.3

Second Prototype: User Profile and Context Detection, Usage Analysis

Institute # of articles in RePEc

EconStor 28,600

Deutsches Institut für Wirtschaftsforschung (DIW) 4,500

European Regional Science Association (ERSA) 4,300

Fondazione Eni Enrico Mattei (FEEM) 1,500

Forschungsinstitut zur Zukunft der Arbeit (IZA) 9,650

Humboldt-Universität zu Berlin 800

ifo Institut - Leibniz-Institut für Wirtschaftsforschung, München 5,500

Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg 500

Institut für Makroökonomie und Konjunkturforschung (IMK) 270

Institut für Weltwirtschaft (IfW), Kiel 2,000

Inter-American Development Bank, Washington, DC 800

SFB/TR 15 Governance and the Efficiency of Economic Systems 500

Volkswirtschaftliche Fakultät, Ludwig-Maximilians-Universität München 400

Tinbergen Institute, Amsterdam and Rotterdam 2,300

University of California 500

Sum 62,120

Table 3: Number of EconStor articles that are on RePEc

Econstor provides a PDF containing the full text whereas RePEc provides citation information. Both

services provide an API that allows to easily merge these information.

But not all EconStor article can be found on RePEc. Therefore, we estimated the expected coverage.

Table 3 shows in the first row the number of EconStor articles that are directly referenced by RePEc.

The rest of the table shows the number of articles that can be found on RePEc as well as on EconStor

but in those cases RePEc does not link to EconStor. This means that at least 62k citation counts can be

found. Presumably the number is even higher, because only the 15 larges institutes were taken into

account.

7.5 Network architecture

Convolutional network [LeC+98] with (max or mean) pooling followed by fully connected layers on

top will be used. In case overfitting is observed, regularization (e.g. dropout) will be used between

the fully connected layers. Data in the input layer will be represented on character level, as this has

shown interesting results in similar tasks [ZZL15]. The output layer will only indicate whether a text

is estimated to be relevant or not, instead of indicating a continuous value. It will not indicate how

popular it might be. The depth and the number of neurons per layer will be determined during the

experiment, starting with 3-4 convolutional layers and 3 fully connected layers with 1024 neurons per

layer.

8 Resource Mining Prototype

In this section the two existing components, the Blog Crawler and the Blog analyzer) are described.

The question, that led to the development of the blog analyzer was:

Can we establish backlinks from manually selected economic blogs to EconBiz resources?

That is to say can we implement a mechanism, that, in a first step, identifies resources (like topics,

persons, publications) in blog posts and in a second step searches EconBiz to detect if these resources

are included in EconBiz.
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Figure 5: Working paper hosted at RePec with citation information highlighted.

In case of success this approach could enhance the federated recommender with links to related so-

cial media content. For instance, users could receive recommendations not only including the EconBiz

resource, but also a reference to the blog post that deals with that resource.

8.1 Source Code and License

The source code of the components described in this section is available via the following URLs:

• Blog Crawler http://purl.org/eexcess/components/research/blogcrawler

• Blog Analyser http://purl.org/eexcess/components/research/bloganalyzer

This code is released under the conditions of the Apache 2.015 license. The API documentation can

be found in the appendix on pages 57 and 59.

15http://www.apache.org/licenses/LICENSE-2.0
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Figure 6: Working paper hosted at EconStor with link to full text highlighted.

8.2 Summary

While the blog analyzer will not be developed further, the blog crawler will see some new features in

the last year of the project that will allow it to fetch a larger amount of blog posts. This is required

in order to make the relevance estimator work reasonably. as DNNs need large data sets to perform

well. But, prior to that, we will first investigate the potential of this technique on a data set made up

of research papers, which can be acquired much more easily than blog posts.
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9 Privacy-Preserving Usage Analysis Concept

In this section we describe means to conduct usage analysis of the EEXCESS framework while preserv-

ing the users’ privacy. In order to analyze how users interact with EEXCESS components and services,

we need to collect usage data. In EEXCESS, usage data is both a valuable resource for improving our

services and a sensitive resource in terms of privacy. Therefore, we developed the usage mining con-

cept with both these requirements in mind. For acquiring usage data we log user interactions and

for privacy-preserving usage mining we adopt a k-Anonymity approach, that hides individual users

in a group of similar users. In the following, we first review the purpose of usage analysis, then we

describe the data we collect and finally we present a concept that permits usage analysis without

disclosing private information about individual users.

9.1 Intended Purpose

Usage Analysis in EEXCESS serves the following purposes:

• Organizational: Provide a mechanism that makes the uptake of the EEXCESS framework trans-
parent.

– Reporting: In order to compile an in-time assessment of the quality of the services of EEX-

CESS, we require a well-defined process that gathers information from all components in a

consistent format.

– Planning: For strategical decisions, regarding the integration of new partners and the ex-

ploitation of additional content injection scenarios, we need to keep track of temporal usage

behavior and trends.

• Technical: Identify potential improvements in individual EEXCESS components.
– Automatic query generation: Usage statistics can be used to improve the query generation

process. Since EEXCESS offers the capability of automatically inferring queries from the

page, paragraph or sentence level context of a user, knowledge about interest groups can

be helpful in guiding this inference process.

– User interfaces: EEXCESS offers a variety of different types of search interfaces and result

visualizations. In order to best support users in finding the resources they are interested

in, we need measures to analyze how users interact with the components.

– Federated Recommender: Usage data can provide valuable input to the Federated Recom-

mender to perform source selection, i.e. to decide to which content providers the query

should be forwarded to retrieve the best results.

• Promotional: Provide live feedback to various interest groups. In particular, these are analysts
working for digital library on the content provider side, and individual user groups on the content

consumption side.

– Integrated content provider: Digital libraries which are already integrated into the EEXCESS

ecosystem shall be kept informed about the usage of their resources.

– Prospective content provider: For future content providers we want to provide information

about the current coverage of topical domains and the thematic interests of user groups.

– Users: We provide the same information as aggregated statistics for users to view their

usage of EEXCESS in the context of the interests of other user groups.
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Figure 7: Client-side and server-side logging of usage data.

9.2 Usage Data

To provide reliable information for the purposes mentioned above, we need to collect usage data

from the client-applications of EEXCESS. The data collection is handled by a client-side and a server-

side logging component. The server-side component resides on the Privacy Proxy and implicitly logs

all queries and responses that pass through the proxy. In contrast, the client-side component has

to be integrated by client-developers into their applications. The client-side component provides the

functionality to create pre-defined logging events from user interactions and to send these to the

Privacy Proxy (see also Figure 7). All usage data is stored on the Privacy Proxy. In particular, we collect

the following data:

• Queries and Responses

• Details Queries and Details Responses

• User interactions with client components:
– Opening of a visualization

– Closing of a visualization

– Usage data of a visualization

• User interactions with resources:
– Opening of a resource in detailed view

– Closing of a resource in detailed view

– Usage of a resource as text citation

– Usage of a resource as image citation

– Usage of a resource as hyperlink citation

– A user’s rating of a resource

The client-side logging component is described in Section 10.

9.3 Privacy-Preserving Usage Mining

This section describes the usage mining concept with regard to privacy-preservation. In contrast to a

user’s interactions with search interfaces and result visualizations, the usage and rating of resources

bears much more sensitive private information about users. Therefore, we focus on preserving the

privacy of this kind of information. With usage mining we seek an answer to the question: What kind
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of resources were actually useful for certain kinds of users? This question suggests that we require

a textual description of user interests and a textual description to characterize resources. The use-

fulness is quantized by the number of explicit interactions with a resource, which we obtain through

logging.

A user is represented by his query history. Queries can be issued either manually by searching for par-

ticular keywords or generated automatically from the user’s context (see also Section 4). Therefore,

the query history consists of a list of keywords the user explicitly searched for and keywords that were

automatically extracted while navigating through various contexts. We consider this set of keywords

as the description of a user.

Similarly, a resource is also represented as a set of keywords that we extract from the resource’s

annotations. For the purpose of privacy-preserving usage mining we relate user representations to

resource representations via a user-item-matrix. An entry in this matrix is the user-interest score for

an item. We derive each score from the number of times a particular user interacted with a particular

item, i.e. we compute a weighted sum of the individual resource interactions listed above (Section 9.2).

The result is a user-item matrix in which the rows correspond to users, the columns correspond to

items and the entries correspond to the degree of interest of a user for an item.

To enforce privacy guarantees on the resource consumption behavior of an individual user, we hide

her in a group of at least k users that have a similar set of keywords. An individual user is thus indistin-
guishable from the k − 1 other users that share the same keywords (k-anonymity). The grouping can
be performed by applying a clustering algorithm (e.g., hierarchical, autoencoder, expectation maxi-

mization, k-means, etc.) on the keyword sets of all users. Therein, the research question is how the

clustering methods can be modified to guarantee a minimum group size k. After having obtained a
user group, we can compile a set of user-group keywords from the keyword sets of all users in that

group.

For all users within a group, we collect the items that have high user-interest scores in the user-item

matrix. Similar to before, we compile a set of item-group keywords from the item descriptions. Finally,

this procedure enables us to derive a textual description for items, which a group of users is interested

in. Here, the research question is how to build abstract topic descriptions from very specific keywords.

Usage data, which is not related to user interests, can be analyzed directly and provided as aggregated

statistics without privacy disclosure.

10 Privacy-Preserving Usage Analysis Libraries

The acquisition of usage data is implemented in the client-side logging library. Client-developers are

asked to include this library in their applications in order to enforce consistency of the logged data.

This library is available as a self-contained module from the C4-package16. A detailed description and

the source code documentation of the module is given in the Appendix on page 41. The server-side

logging component is described in deliverable D6.3 [Mok+14].

11 Privacy-Preserving Usage Analysis Prototype

The usage mining prototype development has been started. Currently, we are developing a web appli-

cation which consists of a usagemining component as backend and a publicly accessible web interface

as frontend. The usagemining component regularly crawls the log-files and updates the user-itemma-

trix along with various aggregated statistics (i.e. number of users, number of resources consumed per

content provider, etc.). The web interface displays these statistics by means of comprehensive stan-

dard visualizations. Similar visualizations can potentially be included in client-applications as well.

16http://www.purl.org/eexcess/components/c4
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12 Summary and Future Work

In this deliverable we presented the current status of the user and usage mining prototypes. The core

component for user mining is the context detection library C4, which is modularized and can be used

by any web-based client. C4 also wrapped the logging functionality and the server-side component

for detecting entities and entity categories for a given text (DoSeR). Resource mining development

continued along two lines: analysis of project-internal resources with the prerequisite of privacy-

preserving logging, and popularity estimation of external resources with the focus on blogs.

Future work on user and usage mining will focus on these three components. Our goal is to

1. Finish the Analysis GUI to make EEXCESS usage statistics available to internal and prospective

data providers.

2. Finish the Popularity Estimator to find external resources that relate to EEXCESS content.

3. Finish development of the context detection library. To this extend a user study is planned in

Q4/2015 in which training data for model improvements will be collected.
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13 Glossary

BITM

BitMedia, Austria

C4

SCientific and Cultural Content in Context

CT

Collection Trust, United Kingdom

DoSeR

Disambiguation of Semantic Resources

DoW

Description of Work

EEXCESS

Enhancing Europe’s eXchange in Cultural Educational and Scientific Resources

INSA

Institut National des Sciences Appliquées (INSA) de Lyon, France

JR-DIG

JOANNEUM RESEARCH Forschungsgesellschaft mbH, Austria

KB

Knowledge Base

KBL-AMBL

Kanton Basel Land, Suisse

Know-Center

Kompetenzzentrum für Wissenschaftsbasierte Anwendungen und Systeme Forschungs- und En-

twicklungs Center GmbH, Austria

MEN

Mendeley Ltd., United Kingdom

Uni Passau

University of Passau, Germany

WM

wissenmedia, Germany

ZBW

German National Library of Economics, Germany
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A Appendix: Source Code Documentation

This section contains the detailed source code documentation for the following modules

• Entity and Category Detection service to provide an in-detail summary of entities and categories
given one or multiple paragraphs.

⇒ on page 37

• Word2Vec Rest Server to provide word2vec and doc2vec similarities.
⇒ on page 39

• Client-side library for context detection and wrappers for logging and entity disambiguation (Cul-
tural and sCientific Content in Context – C4), currently used in the Chrome extension, the Moodle

plugin, and the Wordpress plugin.

⇒ on page 41

• Self-contained widgets communicating through a dedicated message set via the Web Messaging
API, currently used in the Chrome extension, the Moodle plugin, and the Wordpress plugin.

⇒ on page 54

• Blog Crawler component for crawling and storing blog posts.
⇒ on page 57

• Blog Analyser for linking Blogs to EEXCESS.
⇒ on page 59
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Entity	and	Category	Detection

Our Entity and Category Detection service detects entities and categories of paragraphs. We
offer a Json rest interface which can be easily used to perform these tasks.

Download

For the Eexcess functions you have to download the following:

Eexcess Stand-alone jar

Doc2Vec Model

DBpedia HDT Files

Configuration file

The files can be downloaded under this Link
(https://www.dropbox.com/s/qbsbp9zfpc7h8sx/eexcess_package.tar?dl=0)

DBpedia Spotlight & English/German Models DBpedia Spotlight	(https://github.com/dbpedia-

spotlight/dbpedia-spotlight/wiki/Run-from-a-JAR)

Installation

Put Eexcess Stand-Alone jar and the configuration file into the same directory and adapt the
configuration file accordingly. Executing the jar file starts an Apache Tomcat 7 server
deploying the Eexcess web application.

Additionally, the eexcess application requires our Word2Vec Server Server
(https://github.com/quhfus/DoSeR/wiki/Word2Vec-Rest-Server)	to run properly.

Input	Json	Format

Set of Paragraphes: A textual paragraph containing "headline", "id" and "content".

Paragraph#Headline: The paragraph's headline

Paragraph#Id: Unique identifier to address the paragraph

Paragraph#Content: The textual main content, that should be annotated.

Input	Example	Format

{

"paragraphs"	: 	[{

								"headline"	: 	"Childhood",

								"id"	: 	"0",

								"content"	: 	"Ada	Lovelace	was	born	Augusta	Ada	Byron	on	10	December	1815,	t


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Output	Json	Format

The sample code below shows a possible response to the given query above. We omit several
entities and categories in the code below due to space constraints.

Request	URL

Our Rest service is currently reachable under the following URL
http://zaire.dimis.fim.uni-passau.de:8999/doser-
disambiguationserverstable/webclassify/entityAndCategoryStatistic	(http://zaire.dimis.fim.uni-

passau.de:8999/doser-disambiguationserverstable/webclassify/entityAndCategoryStatistic)

he	child	of	the	poet	George	Gordon	Byron,	6th	Baron	Byron,	and	Anne	Isabella	\"Anna

bella\"	Milbanke,	Baroness	Byron.	George	Byron	expected	his	baby	to	be	a	\"glorious

	boy\"	and	was	disappointed	when	his	wife	gave	birth	to	a	girl.	Augusta	was	named	a

fter	Byron's	half-sister,	Augusta	Leigh,	and	was	called	\"Ada\"	by	Byron	himself."

				}

]

}

{"paragraphs": [{"id": "0","topic": {"text": "Anne	Isabella	Byron,	Baroness	Byron","en

tityUri": "http://dbpedia.org/resource/Anne_Isabella_Byron,_Baroness_Byron","categor

ies": [],"type": "","offset": []},"time": [{"mention": "10	December	1815","relevantEnti

ties": [{"text": "Ada	Lovelace","entityUri": "http://dbpedia.org/resource/Ada_Lovelac

e","categories": [{"name": "Ada	programming	language","uri": "http://dbpedia.org/reso

urce/Category:Ada_programming_language"}],"type": "Person","offset": 0}]}],"statisti

c": [{"key": {"text": "Lord	Byron","entityUri": "http://dbpedia.org/resource/Lord_Byro

n","categories": [{"name": "People	educated	at	Aberdeen	Grammar	School","uri": "http:

//dbpedia.org/resource/Category:People_educated_at_Aberdeen_Grammar_School"},{"name

": "Burials	in	the	East	Midlands","uri": "http://dbpedia.org/resource/Category:Buria

ls_in_the_East_Midlands"}],"type": "Person","offset": [83]},"value": 4}]}]}


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Word2Vec	Rest	Server

Our Python Word2Vec Rest Server delivers word2vec similarities between Wikipedia/DBpedia
entities. Moreover, it is able to accept sentences/documents and computes a similarity score
between the document and one or multiple entities.

Setup
To start the Word2Vec Rest Server, you need the following python packages install:

1. Python 2.7 or later

2. Gensim 0.12.1 or later

3. Gunicorn 19.3.0 or later

4. Flask 0.10 or later

Simply start > startserver to start the server. Default settings: Running on http://0.0.0.0:5000
(http://0.0.0.0:5000)	Settings can be adapted in Word2VecRest.py in the constructor of
GunicornApplication.

Possible Settings:

IP/Port Address: The ip address and port the server is binded to

Workers: The number of parallel requests

D2WModel: Path to Document to Vec Model

W2VModel: Path to Word2Vec Model

If the server should be reachable from another host, you should install a proxy server (e.g.
nginx) to forward the request since flask and gunicorn do not provide connection outside of
localhost by default.

Usage

Word2Vec

To compute the similarities between the entities Alan_Turing and Computer_science as well
as Ada_Lovelace and Lord_Byron we use the JSON code below. Generally, we can concatenate
multiple entity pairs which should be compared.

{

"data": ["Alan_Turing|Computer_science",	"Ada_Lovelace|Lord_Byron"]

}


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We note that the entity names are the same as provided by Wikipedia/DBpedia.

Doc2Vec

With Doc2Vec we are able to infer a vector out of a text snippet. This vector is compared with
the given entities vectors. In other words we compute the similarity between the given text
and the entity describing texts of the given entities.

The resulting similarity value is in the range between 0 and 2, with 2 meaning that the
documents are identical. Again, the entity names are the same as provided by
Wikipedia/DBpedia.

{

"document": [{

"surfaceForm": "Ada	Lovelace",

	"qryNr": "0",

	"context": "Lovelace	was	born	10	December	1815	as	the	only	legitimate	child	of	the	

poet	George,	Lord	Byron	and	his	wife	Anne	Isabella	Noel.	All	Byron's	other	children

	were	born	out	of	wedlock	to	other	women.	Byron	separated	from	his	wife	a	month	aft

er	Ada	was	born	and	left	England	forever	four	months	later,	eventually	dying	of	dis

ease	in	the	Greek	War	of	Independence	when	Ada	was	eight	years	old.	Ada's	mother	re

mained	bitter	towards	Lord	Byron	and	promoted	Ada's	interest	in	mathematics	and	log

ic	in	an	effort	to	prevent	her	from	developing	what	she	saw	as	the	insanity	seen	in

	her	father,	but	Ada	remained	interested	in	him	despite	this	(and	was,	upon	her	eve

ntual	death,	buried	next	to	him	at	her	request).",

	"candidates": ["Ada_Lovelace",	"Lord_Byron"]

}]

}


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C4 - Cultural and sCientific Content in Context

Installation

The simplest way is to use bower	(http://bower.io/)	. C4 is available in the package repository, so
bower	install	c4 will install everything you need.
After c4 is installed, you might need to configure the paths for requirejs. This can be
comfortably automated with grunt-bower-requirejs	(https://github.com/yeoman/grunt-bower-
requirejs)	. If you choose to configure the paths manually, your configuration might look similar
to this (first part of the script, in which you want to use c4 modules):

Once the paths are configured, you need to include your script via requirejs as usual, for
example like so:

where myScript is the script you want to execute and in which you use c4 modules.

Module	Overview

APIconnector A module that simplifies requests to the EEXCESS privacy proxy. It allows
to send (privacy preserved) queries, obtain details for a set of document badges
(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-format#response-

format)	and provides a cache of the last queries/result sets.

paragraphDetection A module that allows to extract textual paragraphs from HTML
documents (opposed to navigational menus, advertisements, etc.), construct queries in
the EEXCESS query profile	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-
and-Response-format#query-format)	format and determine the currently focused paragraph.

CitationBuilder A module to assemble ready-to-use citations from metadata provided
as JSON. See the CitationBuilder README.md	(CitationBuilder/README.md)	for details.

searchBar A module to add a bar to the bottom of the page, which allows query

requirejs.config({

		baseUrl: 	'bower_components/',

		paths: 	{

				jquery: 	'jquery/dist/jquery',

				"jquery-ui": 'jquery-ui/jquery-ui',

				graph: 'graph/lib/graph',

				"tag-it": 'tag-it/js/tag-it'

		}

});



<script	data-main="myScript"	src="bower_components/requirejs/require.js"></script>
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interaction and displaying results.

iframes A utility module for communication with iframes, which enables broadcasting
messages.

namedEntityRecognition A utility module for communication with the DoSer
(https://github.com/quhfus/DoSeR)	named entity recognition service.

logging A module that simplifies the handling of different types of logging events.

APIconnector

The APIconnector module provides means to communicate with the (EEXCESS) Federated
Recommender via the Privacy Proxy.
A working example using the APIconnector can be found in examples/searchBar_Paragraphs
(examples/searchBar_Paragraphs)

init(settings): allows to initialize the APIconnector with custom parameters. You
must call this method and specify the origin attribute (see below), before you can send
queries. The minimum configuration is shown in the example below. The following
parameters can be customized:

base_url The basic url of the server to call

timeout The timeout in ms, after which a request to the server is canceled. Default
is 10000.

logTimeout The timeout in ms, after which a logging request to the server is
canceled. Default is 5000.

loggingLevel Flag whether queries/results should be logged on the privacy proxy.
Defaults to 0 (logging enabled). If you want to disable the logging on the server
you need to set the flag to 1.

cacheSize The size of the query/result cache. Determines how many queries and
corresponding result sets should be cached. Default is 10.

suffix_recommend The endpoint for the recommender service. Default:
"recommend".

suffix_details The endpoint to get details for result items. Default: "getDetails".

suffix_favicon The endpoint from which to retrieve the provider favicons.
Default: "getPartnerFavIcon?partnerId=".

suffix_log The endpoint for logging requests. Default: "log/".

origin The identifier for the requesting client/user. This object must contain the
attributes clientType, clientVersion and userID, see the example below.

require(['c4/APIconnector'],	function (api)	{

		api.init({

				origin: {

						clientType: "some	client",	//	the	name	of	the	client	application

						clientVersion: "42.23",	//	the	version	nr	of	the	client	applicatio

n

						userID: "E993A29B-A063-426D-896E-131F85193EB7"	//	UUID	of	the	curr


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query(profile,callback): allows to query the Federated Recommender (through the
Privacy Proxy). The expected parameters are a EEXCESS profile
(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-format)	and a
callback function.

queryPeas: allows to query the Federated Recommender (through the Privacy Proxy) in a
privacy-preserving way. It returns the exact same result as query. It uses the PEAS
indistinguishability protocol	(https://github.com/EEXCESS/peas#indistinguishability-protocol)	. This
example shows how to use it:

getDetails(detailsRequestObj,callback): allows to retrieve details for result items
from the Federated Recommender (through the Privacy Proxy). The expected parameter
is a detailsRequestObj	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-
Response-format#pp-details-query-format)	object, that has an origin, queryID and a list of
document badges	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-
Response-format#response-format)	of the items for which to retrieve details. A callback
function can be used to return the results to.

ent	user

				}

		});

});

require(['c4/APIconnector'],	function (api)	{

		var 	profile	= 	{

				contextKeywords: [{

						text: "someKeyword"

				}]

		};

		api.query(profile,	function (response)	{

				if (response.status	=== 	'success')	{

						//	do	something	with	the	result	contained	in	response.data

				}	else 	{

						//	an	error	occured,	details	may	be	in	response.data

				}

		});

});



require(["APIconnector"],	function (apiConnector){

		var 	nbFakeQueries	= 	2;	//	The	greater	the	better	from	a	privacy	point	of	v

iew,	but	the	worse	from	a	performance	point	of	view	(2	or	3	are	acceptable	va

lues).	

		var 	query	= 	JSON.parse('{"origin":	{"userID":	"E993A29B-A063-426D-896E-131

F85193EB7",	"clientType":	"EEXCESS	-	Google	Chrome	Extension",	"clientVersion

":	"2beta",	"module":	"testing"},	"numResults":	3,	"contextKeywords":	[{"text

":	"graz","weight":	0.1},	{"text":	"vienna","weight":	0.3}]');

		apiConnector.queryPeas(query,	nbFakeQueries,	function (results){

				var 	resultsObj	= 	results.data;	

		});

});


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getCache(): allows to retrieve the cached queries/result sets.

getCurrent(): allows to retrieve the last successfully executed query and corresponding
result set. Returns null if no successful query has been executed up to that point.

logInteractionType: Enum for logging interaction types. See sendLog for usage.

sendLog(interactionType,	logEntry): allows to send logging requests to the server.
The parameter interactionType specifies the type of the interaction to log and the
parameter logEntry the entry to be logged.

require(['c4/APIconnector'],	function (api)	{				

		var 	detailsRequestObj	= 	{

										origin	: 	{"origin": 	{"userID": 	"E993A29B-A063-426D-896E-131F85193EB

7",	"clientType": 	"EEXCESS	-	Google	Chrome	Extension",	"clientVersion": 	"2bet

a",	"module": 	"testing"},

										documentBadge: 	[

														{

																		id: 	"/09003/4A65C4999F4077781A1F9CF2510EE512CD6571B9",

																		uri: 	"http://europeana.eu/resolve/record/09003/4A65C4999F40

77781A1F9CF2510EE512CD6571B9",

																		provider: 	"Europeana"

														}

										],

										queryID: 	"70342716"

						};

		api.getDetails(detailsRequestObj,	function (response)	{

				if (response.status	=== 	'success')	{

						//	do	something	with	the	result	contained	in	response.data

				}	else 	{

						//	an	error	occured,	details	may	be	in	response.data

				}

		});

});



require(['c4/APIconnector'],	function (api)	{

		api.getCache().forEach(function (){

				console.log(this .profile);	//	the	query

				console.log(this .result);	//	the	result	set

		});

});



require(['c4/APIconnector'],	function (api)	{

		var 	current	= 	api.getCurrent();

		console.log(current.profile);	//	the	query

		console.log(current.result);	//	the	result	set

});



require(['c4/APIconnector'],	function (api)	{

		//	the	log	entry	normally	will	be	created	within	a	widget,	here	we	define	o

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paragraphDetection

A module to extract textual paragraphs from arbitrary webpage markup, find the paragraph
currently in focus of the user and create a search query from a paragraph.
A working example using the paragraphDetection can be found in
examples/searchBar_Paragraphs	(examples/searchBar_Paragraphs)

init(settings):allows to initialize the paragraph detection with custom parameters.
You only need to provide the parameters you want to change. Parameters that can be
changed are a prefix that is used for the identifiers of newly created HTML elements
and the classname that will added to those elements (atm a wrapper div with the
mentioned parameters is created around the detected paragraph). The example uses the
default values, if you are fine with these, you do not need to call the init method.

getParagraphs([root]): allows to detect text paragraphs in arbitrary HTML markup. The
detection heuristic tries to extract 'real' paragraphs, opposed to navigation menus,
advertisements, etc. The root parameter (optional) specifies the root HTML-element
from where to start the extraction. If it is not given, the detection will use document as
root.
Returns an array of the detected paragraphs with the entries in the following format:

ne	explicitly.

		//	The	entry	we	create	logs	the	citation	of	a	result	item	as	an	image.

		var 	logEntry	= 	{

				origin: {

						module: "example	widget"

				},

				content: {

						documentBadge: {< documentBadge	of	the	item> }

				},

				queryID:< identifier	of	the	query	that	provided	this 	result	item>

		}

		api.sendLog(api.logInteractionType.itemCitedAsImage,logEntry);

});

require(['c4/paragraphDetection'],	function (paragraphDetection)	{

		paragraphDetection.init({

				prefix: "eexcess",	//	default	value

				classname: "eexcess_detected_par"	//	default	value

		});

});



{

		id: 	"<prefix>_par_0",	//	identifier,	the	prefix	can	be	customized	via	the	i

nit	method

		elements: [],	//	the	HTML-elements	spanning	the	paragrah

		multi: false ,	//	indicator,	whether	the	paragraph	consists	of	e.g.	a	singe	

<p>	element	or	several	<p>	siblings


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Usage:

paragraphToQuery(text,callback,[id],[headline]): creates a query from the given text
in the EEXCESS profile	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-
Response-format#query-format)	format. Only the attribute contextKeywords will be set. The
parameters to be set are:

text - The text of the paragraph for which to create a query

callback(response) - The callback function to execute after the query generation.
The generated query profile is contained in response.query or if an error occurs,
error details are provided in response.error

[id] - optional identifier of the paragraph

[headline] - optional headline corresponding to the paragraph

findFocusedParagraphSimple([paragraphs]): tries to determine the paragraph, the user
is currently looking at.
In this simple version, the topmost left paragraph is accounted as being read, except for
the user explicitly clicking on a paragraph. When a change of the focused paragraph
occurs, a paragraphFocused event is dispatched with the focused paragraph attached.
The set of paragraphs to observe can be specified via the optional paragraphs
parameter. If this parameter is not set, the method will observe paragraphs already
detected by the module (if any - e.g. from a previous getParagraphs call). The
paragraphFocused event may be dispatched several times for the same paragraph.

		content: "Lorem	ipsum	dolor",	//	the	textual	content	of	the	paragraph

		headline: "Sit	Amet"	//	textual	content	of	the	corresponding	headline	of	the

	paragraph

}

require(['c4/paragraphDetection'],	function (paragraphDetection)	{

		var 	paragraphs	= 	paragraphDetection.getParagraphs();

		paragrahps.forEach(function (entry){

				console.log(entry);	//	do	something	with	each	paragraph

		});

});



require(['c4/paragraphDetection'],	function (paragraphDetection)	{

var 	text	= 	'Lorem	ipsum	dolor	sit	amet...';

paragraphDetection.paragraphToQuery(text,	function (response){

if (typeof 	response.query	!== 	'undefined')	{

		//	query	has	sucessfully	been	constructed

		console.log(response.query);

}	else 	{

		//	something	went	wrong

		console.log(response.error);

}

});

});



require(['jquery','c4/paragraphDetection'],	function ($,paragraphDetection)	{
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findFocusedParagraph([paragraphs]): tries to determine the paragraph, the user is
currently looking at.
This method is in principle identical to findFocusedParagraphSimple, but accounts for
more implicit user interaction. The probability of a focused paragraph is calculated by a
weighted combination of its size, position and distance to the mouse position. When
mouse movements occur, the distance to the mouse position has a higher weight,
while scrolling events render the paragraph position more important.

CitationBuilder

Please see the README.md	(CitationBuilder/README.md)	of the CitationBuilder module for details.

searchBar

A module that adds a search bar to the bottom of the page, which enables to show and modify
the query and display the results.
A working example using the searchBar can be found in examples/searchBar_Paragraphs
(examples/searchBar_Paragraphs)

init(tabs[,config]): initializes the search bar with a set of visualization widgets
(parameter tabs) and custom configuration options (optional parameter config).
The tabs parameter specifies the visualization widgets
(https://github.com/EEXCESS/visualization-widgets)	to use for displaying the result in the
following format:

		//	detect	paragraphs	in	the	document

		paragraphDetection.getParagraphs();

		//	listen	for	paragraphFoucsed	events

		$(document).on('paragraphFocused',	function (e){

				console.log(evt.originalEvent.detail);	//	the	focused	paragraph

		});

		//	set	up	tracking	of	focused	paragraph

		paragraphDetection.findFocusedParagraphSimple();

});

require(['jquery','c4/paragraphDetection'],	function ($,paragraphDetection)	{

		//	detect	paragraphs	in	the	document

		paragraphDetection.getParagraphs();

		//	listen	for	paragraphFoucsed	events

		$(document).on('paragraphFocused',	function (e){

				console.log(evt.originalEvent.detail);	//	the	focused	paragraph

		});

		//	set	up	tracking	of	focused	paragraph

		paragraphDetection.findFocusedParagraphSimple();

});


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The config object allows to customize the following parameters (you only need to
specify the ones you would like to change):

queryFn - a custom function to query a server for results. The function must look
like

where the profile parameter represents an EEXCESS query profile
(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-

format#query-format)	. By default, the query method of the APIconnector module is
used.

imgPATH - path where images are stored. Defaults to 'img/'

queryModificationDelay - the delay before a query is executed (in ms) after the
user interacted with it (added/removed keywords, changed main topic, etc).
Defaults to 500.

queryDelay - the delay (in ms) before a query is executed due to changes from the
parent container. This delay is used after the query has been changed through the
setQuery method of this module. Defaults to 2000.
In addition, the delay can also be provided as parameter to the setQuery function,
in order to enable different delays for specific interactions.

storage - an object providing storage capabilities. By default, the search bar will
use the browser's local storage to store values. The storage function must exhibit
two functions:

set(item,	callback) The item passed to this function is an object
containing key value pairs to store. It looks like this:

[{

		name: "widget	name"	//	name	of	the	widget,	will	be	displayed	in	the	tab	navi

gation	for	selection	of	the	widget

		url: "<path>"	//	path	to	the	main	page	of	the	widget

		icon: "<path>"	//	path	to	an	icon	image	for	the	widget	(optional)

},{

		name: "widget2",

		url: "<path2>"

},{

		//	...

}

]



		function (profile,function (response){

				console.log(response.status);	//	should	inform	about	the	status,	ei

ther	'success'	or	'error'

				console.log(response.data);	//	should	contain	the	results	on	succes

s	and	error	details	on	error

		});



{

		key1: "value1",	//	value	can	be	a	simple	type	like	String

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The callback parameter is a callback function without parameters to be
executed after storing the item.

get(key,	callback) The key parameter is either a single String (to get a
single value) or an Array of Strings (to get several values).
The callback function should be called with an object, containing the
provided key(s) and their corresponding values like so:

setQuery(contextKeywords	[,delay]): sets the query in the search bar. The
contextKeywors must be in the format as the contextKeywords in the EEXCESS query
profile format	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-
format#query-format)	.
The query will automatically be executed after the delay given by the settings (default:
2000ms, can be customized via searchBar.init(<tabs>,{queryDelay:<custom	value>}).
Alternatively, this setting can be overwritten by providing the optional delay
parameter, which specifies the delay in ms.

iframes

A utility module for communicating between iframes

sendMsgAll(message): send a message to all iframes embedded in the current window.
The expected parameter is the message to send. The example below shows how to
inform all included widgets	(https://github.com/EEXCESS/visualization-widgets)	that a new query
has been issued.

		key2: {

				//	value	can	also	be	an	JSON-serialiazable	objects

		}

}

		var 	response	= 	{

				key1: 	value1,

				key2: 	value2

		}

		callback(response);



require(['jquery','c4/searchBar'],	function ($,searchBar)	{

		//	searchBar	needs	to	be	initialized	first,	omitted	here

		var 	contextKeywords	= 	[{

				text: "Lorem"

		},{

				text: "ipsum"

		}];

		searchBar.setQuery(contextKeywords,	0);	//	query	is	set	and	will	be	immedia

tely	executed	(delay:	0ms)

});


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namedEntityRecognition

A utility module to query the EEXCESS recognition and disambiguation service

entitiesAndCategories(paragraphs,callback): allows to extract Wikipedia entities and
associated categories from a given piece of text. In addition, the main topic of the text
and time mentions are extracted. The expected parameters are a set of paragraphs and a
callback function.

require(['c4/iframes'],	function (iframes)	{

		var 	profile	= 	{

				contextKeywords: [{

						text: 'someKeyword'

				}];

		};

		iframes.sendMsgAll({

				event: 'eexces.newQueryTriggered',

				data: profile

		});

});



require(['c4/namedEntityRecognition'],	function (ner)	{

		var 	paragraph	= 	{

				id: 42,

				headline: "I	am	a	headline",

				content: "Lorem	ipsum	dolor..."

		};

		ner.entitiesAndCategories({paragraphs: [paragraph]},	function (response){

				if (response.status	=== 	'success')	{

						//	the	results	are	contained	in	response.data.paragraphs

						response.data.paragraphs.forEach(function (){

								console.log(this .time);	//	contains	time	mentions	and	associated	ent

ities/categories

								console.log(this .topic);	//	contains	the	main	topic	entity

								console.log(this .statistic);	//	contains	the	extracted	entities/cate

gories

								this .statistic.forEach(function (){

										console.log(this .key.text);	//	label	of	the	entity

										console.log(this .key.categories);	//	associated	categories

										console.log(this .key.type);	//	type	of	the	entity	(person,	locatio

n,	organization,	misc)

										console.log(this .value);	//	number	of	occurences	of	the	entity	in	

the	paragraph

								});

						});

				}	else 	{

						//	an	error	occured,	details	may	be	in	response.data

				}

		});


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logging-API

A module that provides an API for generating logging events in the format specified by
Logging Format	(https://github.com/EEXCESS/eexcess/wiki/EEXCESS---Logging)	. Logging-Events are
passed over to the APIconnector which sends it to the logging endpoints of the Privacy Proxy.
A working example on how the logging is to be used, can be found in
examples/loggingExample	(examples/loggingExample)	.

The logging-API provides methods to create logging events in the correct format and it
broadcasts these events as messages via the browser's Messaging-API. Thus, the client
application needs to listen to the following messages and forward them to the Privacy Proxy:

});

		require(['c4/APIconnector'],	function (api)	{

				api.init({origin: 	{

						clientType: 	"EEXCESS	Chrome	extension",

						clientVersion: 	"2.0.1"

						userID: 	"93939A-8494BE-99ADF2"

						}});

				window.onmessage	= 	function (msg)	{

						if 	(msg.data.event)	{

								switch 	(msg.data.event)	{

										case 	'eexcess.log.moduleOpened':

														api.sendLog(api.logInteractionType.moduleOpened,	msg.data.data);

														break ;

										case 	'eexcess.log.moduleClosed':

														api.sendLog(api.logInteractionType.moduleClosed,	msg.data.data);

														break ;

										case 	'eexcess.log.moduleStatisticsCollected':

														api.sendLog(api.logInteractionType.moduleStatisticsCollected,	msg.dat

a.data);

														break ;

										case 	'eexcess.log.itemOpened':

														api.sendLog(api.logInteractionType.itemOpened,	msg.data.data);

														break ;

										case 	'eexcess.log.itemClosed':

														api.sendLog(api.logInteractionType.itemClosed,	msg.data.data);

														break ;

										case 	'eexcess.log.itemCitedAsImage':

														api.sendLog(api.logInteractionType.itemCitedAsImage,	msg.data.data);

														break ;

										case 	'eexcess.log.itemCitedAsText':

														api.sendLog(api.logInteractionType.itemCitedAsText,	msg.data.data);

														break ;

										case 	'eexcess.log.itemCitedAsHyperlink':

														api.sendLog(api.logInteractionType.itemCitedAsHyperlink,	msg.data.dat

a);


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The methods of the logging-API are as follows:

init(config): allows to initialize the logging-API with custom parameters. You must
call this method and specify the origin attribute (see below), before you can call
methods of the logging-API. The following parameters can be customized:

origin The identifier for the requesting component. This object must contain a
module attribute, that specifies the name of the issuing component, see the
example below.

The logging-API provides the following methods to create corresponding logging events:

moduleOpened(moduleName): Create the logging event moduleOpened. The expected
parameter is the name of the component that has been opened.

moduleClosed(moduleName): Create the logging event moduleClosed. The expected
parameter is the name of the component that has been closed.

moduleStatisticsCollected(statistics): Create the logging event
moduleStatisticsCollected. The expected parameter can be of any type. statistics is
logged as-is.

itemOpened(documentBadge,	queryID): Create the logging event itemOpened. The
expected parameters are a documentBadge, which refers to the resource that was opened
in detailed view, and a queryID, which refers to the query that returned the resource.

itemClosed(documentBadge,	queryID,	duration): Create the logging event itemClosed.
The expected parameters are a documentBadge, which refers to the resource that was
closed in detailed view, a queryID, which refers to the query that returned the resource,
and a duration. The latter specifies the time in milliseconds, during which the item was
opened in detailed view.

itemCitedAsImage(documentBadge,	queryID): Create the logging event
itemCitedAsImage. The expected parameters are a documentBadge, which refers to the
resource that was cited as an image, and a queryID, which refers to the query that
returned the resource.

														break ;

										case 	'eexcess.log.itemRated':

														api.sendLog(api.logInteractionType.itemRated,	msg.data.data);

														break ;

										default :

														break ;

								}

						}

				}

		});

		require(['c4/logging'],	function (logging)	{

				logging.init({

						origin: {

								module: 	"Dashboard	Visualization"

						}

				});

		});


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itemCitedAsText(documentBadge,	queryID): Create the logging event itemCitedAsText.
The expected parameters are a documentBadge, which refers to the resource that was
cited as text, and a queryID, which refers to the query that returned the resource.

itemCitedAsHyperlink(documentBadge,	queryID): Create the logging event
itemCitedAsHyperlink. The expected parameters are a documentBadge, which refers to
the resource that was cited as a hyperlink, and a queryID, which refers to the query that
returned the resource.

itemRated(documentBadge,	queryID,	minRating,	maxRating,	rating): Create the
logging event itemRated. The expected parameters are a documentBadge, which refers to
the resource that was rated and a queryID, which referst to the query that returned the
rated resource. minRating and maxRating allow to specifiy the range a rating can have.
rating is the actual value that has been assigned to the resource.

The following examples demonstrate the usage of these methods:

		require(['c4/logging'],	function (logging)	{

						logging.init({

								origin: {

										module: 	"Dashboard	Visualization"

								}

						});

						var 	queryID	= 	"483904939"

						var 	documentBadge	= 	{

								id: 	"995eb36f-151d-356c-b00c-4ef419bc2124",

								uri: 	"http://www.mendeley.com/research/hellenism-homoeroticism-shelley-circ

le",

								provider: 	"Mendeley"

						};

						logging.moduleOpened("anotherVisualizationName");

						logging.moduleClosed("anotherVisualizationName",	5000);

						logging.moduleStatisticsCollected({usageStatistics: 	42});

						logging.itemOpened(documentBadge,	queryID);	

						logging.itemClosed(documentBadge,	queryID,	1500);

						logging.itemCitedAsImage(documentBadge,	queryID);

						logging.itemCitedAsText(documentBadge,	queryID);

						logging.itemCitedAsHyperlink(documentBadge,	queryID);

						logging.itemRated(documentBadge,	queryID,	0,	4,	3);

				});


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Widgets

EEXCESS widgets are components like visualizations (Barchart, FacetScape, ...), which are
typically included via an iframe. Therefore, they should be self-contained, i.e. include all
necessary media, libraries, css-files, etc.

Communication with the EEXCESS-environment is enabled via the window.postMessage-
API, with the available options described in the following.

Usage
For usage examples see the examples folder and the according readme file.

Interface	-	using	window.postMessage
The data attribute in the transmitted messages adheres to the following pattern:

Incoming	messages

Available events:

queryTriggered

new Results

rating

error

queryTriggerd

This event specifies, that a new query was triggered. The event details contain the profile, that
is associated with this query

new	Results

This event indicates the arrival of new results. The event details consist of two attributes:
profile and results. Profile contains the user profile associated with the results and results
contains the results retrieved.

rating

event: eexcess.< event> ,

data: {< event	details> }

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Indicates that an item was rated in another component. The widget can then update the
item's rating accordingly. The event details contain the uri of the item and score of the rating.

error

Used to indicate an error. The event details contain an error message as string.

Outgoing	Messages

Available events:

queryTriggered

eexcess.log.moduleOpened

eexcess.log.moduleClosed

eexcess.log.statisticsCollected

eexcess.log.itemOpened

eexcess.log.itemClosed

eexcess.log.itemCitedAsImage

eexcess.log.itemCitedAsText

eexcess.log.itemCitedAsHyperlink

eexcess.log.itemRated

currentResults

queryTriggered

Indicates a new query. The event details contain the profile associated with that query.

eexcess.log.moduleOpened

Indicates that a module was opened. The event details contain the origin and the name of the
module.

eexcess.log.moduleClosed

Indicates that a module was closed. The event details contain the origin, the name of the
module and optionaly the duration

eexcess.log.statisticsCollected

Indicates that a module wants to log data. The event details contain the origin and the data

eexcess.log.itemOpened

Indicates that an item is opened. The event details contain the origin, the queryID of the
original query and the documentBadge.

eexcess.log.itemClosed
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Indicates that an item is closed. The event details contain the origin, the queryID of the
original query, the documentBadge and optionaly the duration.

eexcess.log.itemCitedAsImage

Indicates that an item was cited in document as an image. The event details contain the
origin, the queryID of the original query and the documentBadge.

eexcess.log.itemCitedAsText

Indicates that an item was cited in document as an text. The event details contain the origin,
the queryID of the original query and the documentBadge.

eexcess.log.itemCitedAsHyperlink

Indicates that an item was cited in document as an hyperlink. The event details contain the
origin, the queryID of the original query and the documentBadge.

eexcess.log.itemRated

Indicates that an item was rated. The event details contain the origin, the queryID, the
documentBadge and the rating.

currentResults

This event may be used by widgets upon initialization to obtain the current resultset (and
associated profile). It triggers the parent window to send a message with a newResults event.
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BlogCrawler

This prototype is a focus web crawler that allows the visiting pre-defined websites, extract
their contents and save them into an elasticsearch	(https://www.elastic.co/products/elasticsearch)
datastore. The blog crawler is based on scrapy	(http://scrapy.org)	, a python framework to
facilitate the development of webscraping applications.

Requirements
Linux or Mac OS X

Python 2.7 or newer

Scrapy 0.22 or newer

lxml

pyOpenSSL

Elasticsearch 1.2.1 or newer

Java Runtime Environment 7 or newer

Installation
The easiest way to install the required software is to use the packet manager of the OS. The
commands below are tested with Ubuntu 14.04, but they should work on all the distributions
that use the apt-get packet manager. For yum-based systems like Fedora and SuSE some
modifications might be required.

The following commands will make sure that all requirements are met:

Elasticsearch can not be installed via apt-ge. Hence, this has to be done manually. First we
download the latest Elasticsearch version:

where x.y.z. is the current version number and thus needs to be replaced. Then the
installation process can be trigged via:

sudo	apt- get	install	- y	build- essential	git	python- pip	python	python- dev	libxml2- d

ev	libxslt- dev	lib32z1- dev	openjdk- 7- jdk

sudo	pip	install	pyopenssl	lxml	scrapy	elasticsearch	dateutils	Twisted	service_iden

tity



wget	https: //download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-x

.y.z.deb

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Again, x.y.z refers to the latest's version number and has to be replaced. The installation is
complete and elasticsearch can be started using the following command:

It is to note, that the service will not start automatically when the computer boots up. If this is
required, the following command has to be used:

The blog crawler can be cloned from Github:

The crawler can be invoked by changing into the just cloned repository-directory and starting
the script crawlall.sh. That the process can take several hours. To interrupt the process must
be pressed.

sudo	dpkg	- i	elasticsearch- x.y.z.deb

sudo	service	elasticsearch	start

sudo	update- rc.d	elasticsearch	defaults	95	10

git	clone	purl.org/ eexcess/ components/ research/ blogcrawler}}
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DataAnalyzer

This prototype is based on the the BlogCrawler that can be found here	(https://github.com/n-

witt/BlogCrawler)	. It searches hyperlinks to PDF-files and downloads them. In the next step it
tries to find a matching document in EconBiz	(http://www.econbiz.de/)	database. It implements
the following strategy:

The program checks whether the meta data fields author and text of the file contain any
information. If so, it sends a query assembled from these strings to EconBiz. After
fetching the result list, the length of the list is checked. In case the result list is longer
than zero, all results are examined and assessed (details will be described in the next
paragraph). When there is no result above a predefined quality threshold, the second
stage is executed, otherwise the result is stored and the processing continues with the
next document.

After the text of the first page of the file is retrieved, the text is divided into smaller
chunks (using punctuation and newline-symbols for that). The processing of these
parts of sentences is similar to the processing of the metadata in the previous section.
They are passed to the EconBiz API and the results are examined. If there is no result
above a predefined quality threshold, no match was found. Otherwise the list of
potential matches is stored.

To assess the quality of the results, a fuzzy string comparison library called fuzzywuzzy
(https://pypi.python.org/pypi/fuzzywuzzy/0.2)	is used. It contains a method that is invoked with an
arbitrary string (selector) and a list of strings (choices). The method returns the choices
sorted by closest match of the selector. Every item of the list also comes with a value from 0 to
100 which is the measure of quality. The following example illustrates that:

The quality value is used to decide if a document matches the search query.

The limitation to the first page is due to the fact that extraction of the text is a computationally
intensive task that can be mitigated by the limitation. Furthermore we assume that the first
page contains the authors name and the title of the document, which is true for many
scientific papers. And it is this information that are particularly valuable for descent search
results.

Requirements
Linux or Mac OS X

> 	choices	= 	["apple	pie",	"apples",	"spaghetti"]

> 	process.extract("apple",	choices)

[('apples',	91),	('apple	pie',	90),	('spaghetti',	36)]

> 	process.extract("apples",	choices)

[('apples',	100),	('apple	pie',	74),	('spaghetti',	29)]}
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Python 2.7 or newer

fuzzywuzzy

PyPDF2

pdfminer

Installation
The recommended installation preliminaries and procedure for the Data Analyzer are
the same as for the Blog Crawler. The following was tested with Ubuntu 14.04. To install
the dependencies, these commands should be used:

Afterwards the repository can be cloned:

Finally, the analyzer can started with these commands:

The script will analyze the File in the samples directory. The results will be printed when
all the computation is done. Every file will be mentioned in the output. The output could
look like this:

match:	True denotes that EconBiz found an entry. quality refers to the likelihood that
the entry found by EconBiz and and file that has been processes correspond. id,	title
and participant refer to the entry found by EconBiz.

sudo	apt- get	install	- y	python	python- pip	git

sudo	pip	install	fuzzywuzzy	PyPDF2	pdfminer


git	clone	purl.org/ eexcess/ components/ research/ bloganalyzer

cd	DataAnalyzer/ eu/ zbw/

python	pdfMetadataExtractor.py


10.	match: 	True

quality: 	90

filename: 	bakken\_fullactivity\_Jan3- 2013.pdf

id: 	10004941699

title: 	Staff	report	Research	Department	of	the	Federal	Reserve	Bank	of	Minnea

polis

participant: 	Minneapolis,	Minn.	: 	Federal	Reserve	Bank	of	Minneapolis


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